Previous |  Up |  Next

Article

Title: On a nonlinear Peetre's theorem in full Colombeau algebras (English)
Author: Nigsch, E. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 69-77
Summary lang: English
.
Category: math
.
Summary: We adapt a nonlinear version of Peetre's theorem on local operators in order to investigate representatives of nonlinear generalized functions occurring in the theory of full Colombeau algebras. (English)
Keyword: nonlinear Peetre's theorem
Keyword: local function
Keyword: Colombeau algebra
MSC: 46F30
idZBL: Zbl 06736744
idMR: MR3631681
DOI: 10.14712/1213-7243.2015.197
.
Date available: 2017-03-12T16:38:37Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146028
.
Reference: [1] Biagioni H.A.: A Nonlinear Theory of Generalized Functions.2nd ed., Springer, Berlin, 1990. Zbl 0694.46032, MR 1049623
Reference: [2] Colombeau J.F.: New Generalized Functions and Multiplication of Distributions.North-Holland Mathematics Studies, 84, North-Holland Publishing Co., Amsterdam, 1984. Zbl 0761.46021, MR 0738781
Reference: [3] Colombeau J.F.: Elementary Introduction to New Generalized Functions.North-Holland Mathematics Studies, 113, North-Holland Publishing Co., Amsterdam, 1985. Zbl 0584.46024, MR 0808961
Reference: [4] Grosser M., Farkas E., Kunzinger M., Steinbauer R.: On the foundations of nonlinear generalized functions I, II.Memoirs. Amer. Math. Soc. 729 (2001). Zbl 0985.46026
Reference: [5] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R.: Geometric Theory of Generalized Functions with Applications to General Relativity.Mathematics and its Applications, 537, Kluwer Academic Publishers, Dordrecht, 2001. Zbl 0998.46015, MR 1883263
Reference: [6] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: A global theory of algebras of generalized functions.Adv. Math. 166 (2002), no. 1, 50–72. Zbl 0995.46054, MR 1882858, 10.1006/aima.2001.2018
Reference: [7] Kriegl A., Michor P.W.: The Convenient Setting of Global Analysis.Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, RI, 1997. Zbl 0889.58001, MR 1471480, 10.1090/surv/053
Reference: [8] Narasimhan R.: Analysis on Real and Complex Manifolds.North-Holland Mathematical Library, 35, reprint of the 1973 edition, North-Holland Publishing Co., Amsterdam, 1985. Zbl 0583.58001, MR 0832683
Reference: [9] Nigsch E.A.: The functional analytic foundation of Colombeau algebras.J. Math. Anal. Appl. 421 (2015), no. 1, 415–435. Zbl 1314.46055, MR 3250487, 10.1016/j.jmaa.2014.07.014
Reference: [10] Nigsch E.A.: Nonlinear generalized sections of vector bundles.J. Math. Anal. Appl. 440 (2016), 183–219. MR 3479595, 10.1016/j.jmaa.2016.03.022
Reference: [11] Oberguggenberger M.: Multiplication of Distributions and Applications to Partial Differential Equations.Pitman Research Notes in Mathematics, 259, Longman, Harlow, U.K., 1992. Zbl 0818.46036, MR 1187755
Reference: [12] Schwartz L.: Sur l'impossibilité de la multiplication des distributions.Comptes Rendus de l'Académie des Sciences 239 (1954), 847–848. Zbl 0056.10602, MR 0064324
Reference: [13] Slovák J.: Peetre theorem for nonlinear operators.Ann. Global Anal. Geom. 6 (1988), no. 3, 273–283. Zbl 0636.58042, MR 0982996, 10.1007/BF00054575
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_6.pdf 259.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo