Previous |  Up |  Next

Article

Title: Finite actions on the Klein four-orbifold and prism manifolds (English)
Author: Kalliongis, John
Author: Ohashi, Ryo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 49-68
Summary lang: English
.
Category: math
.
Summary: We describe the finite group actions, up to equivalence, which can act on the orbifold $\Sigma(2,2,2)$, and their quotient types. This is then used to consider actions on prism manifolds $M(b,d)$ which preserve a longitudinal fibering, but do not leave any Heegaard Klein bottle invariant. If $\varphi\colon G\rightarrow \text{Homeo} (M(b,d))$ is such an action, we show that $M(b,d) = M(b,2)$ and $M(b,2)/\varphi$ fibers over a certain collection of 2-orbifolds with positive Euler characteristic which are covered by $\Sigma(2,2,2)$. For the standard actions, we compute the fundamental group of $M(b,2)/\varphi$ and indicate when it is a Seifert fibered manifold. (English)
Keyword: finite group action
Keyword: prism 3-manifold
Keyword: equivalence of actions
Keyword: orbifold
Keyword: Klein four-group
MSC: 57M99
MSC: 57S99
idZBL: Zbl 06736743
idMR: MR3631680
DOI: 10.14712/1213-7243.2015.193
.
Date available: 2017-03-12T16:37:40Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146027
.
Reference: [1] Dummit D., Foote R.: Abstract Algebra.Wiley, Hoboken, NJ, 2004. Zbl 1037.00003, MR 2286236
Reference: [2] Kalliongis J., Ohashi R.: Finite group actions on prism manifolds which preserve a Heegaard Klein bottle.Kobe J. Math. 28 (2011), no. 1, 69–89. Zbl 1253.57011, MR 2907136
Reference: [3] Kalliongis J., Ohashi R.: Classifying non-splitting fiber preserving actions on prism manifolds.Topology Appl. 178 (2014), 200–218. Zbl 1306.57014, MR 3276737, 10.1016/j.topol.2014.09.010
Reference: [4] Kalliongis J., Ohashi R.: Finite actions on the $2$-sphere and the projective plane.preprint.
Reference: [5] McCullough D.: Isometries of elliptic $3$-manifolds.J. London Math. Soc. 65 (2002), no. 1, 167–182. Zbl 1012.57023, MR 1875143, 10.1112/S0024610701002782
Reference: [6] Orlik P.: Seifert Manifolds.Lecture Notes in Mathematics, 291, Springer, Berlin-New York, 1972. Zbl 0263.57001, MR 0426001
Reference: [7] Scott P.: The geometries of $3$-manifolds.Bull. London Math. Soc. 5 (1983), 401–48. Zbl 0662.57001, MR 0705527, 10.1112/blms/15.5.401
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_5.pdf 381.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo