Previous |  Up |  Next

Article

Title: Spaces with property $(DC(\omega_1))$ (English)
Author: Xuan, Wei-Feng
Author: Shi, Wei-Xue
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 131-135
Summary lang: English
.
Category: math
.
Summary: We prove that if $X$ is a first countable space with property $(DC(\omega_1))$ and with a $G_\delta$-diagonal then the cardinality of $X$ is at most $\mathfrak c$. We also show that if $X$ is a first countable, DCCC, normal space then the extent of $X$ is at most $\mathfrak c$. (English)
Keyword: $G_\delta$-diagonal
Keyword: property $(DC(\omega_1))$
Keyword: cardinal
Keyword: DCCC
MSC: 54D20
MSC: 54E35
idZBL: Zbl 06736749
idMR: MR3631686
DOI: 10.14712/1213-7243.2015.190
.
Date available: 2017-03-12T16:45:22Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146033
.
Reference: [1] Aiken L.P.: Star-covering properties: generalized $\Psi$-spaces, countability conditions, reflection.Topology Appl. 158 (2011), no. 13, 1732–1737. Zbl 1223.54029, MR 2812483, 10.1016/j.topol.2011.06.032
Reference: [2] Arhangel'skii A.V., Buzyakova R.Z.: The rank of the diagonal and submetrizability.Comment. Math. Univ. Carolin. 47 (2006), no. 4, 585–597. Zbl 1150.54335, MR 2337413
Reference: [3] Arhangel'skii A.V., Burke D.K.: Spaces with a regular $G_\delta$-diagonal.Topology Appl. 153 (2006), no. 11, 1917–1929. Zbl 1117.54004, MR 2227036, 10.1016/j.topol.2005.07.013
Reference: [4] Buzyakova R.Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals.Topology Appl. 153 (2006), no. 11, 1696–1698. MR 2227022, 10.1016/j.topol.2005.06.004
Reference: [5] Engelking R.: General Topology.Helderman, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [6] Ginsburg J., Woods R.G.: A cardinal inequality for topological spaces involving closed discrete sets.Proc. Amer. Math. Soc. 64 (1977), no. 2, 357–360. Zbl 0398.54002, MR 0461407, 10.1090/S0002-9939-1977-0461407-7
Reference: [7] Ikenaga S.: Topological concept between Lindelöf and pseudo-Lindelöf.Research Reports of Nara National College of Technology 26 (1990), 103–108.
Reference: [8] Kunen K., Vaughan J.: Handbook of Set-theoretic Topology.North Holland, Amsterdam, 1984. Zbl 0674.54001, MR 0776619
Reference: [9] Matveev M.: A survey on star covering properties.Topology Atlas, 1998.
Reference: [10] Porter J.R., Woods R.G.: Feebly compact spaces, Martin's axiom, and “diamond”.Topology Proc. 9 (1984), 105–121. Zbl 0565.54006, MR 0781555
Reference: [11] Shakhmatov D.B.: No upper bound for cardinalities of Tychonoff c.c.c. spaces with a $G_\delta $-diagonal exists.Comment. Math. Univ. Carolin. 25 (1984), no. 4, 731–746. MR 0782022
Reference: [12] Uspenskij V.V.: A large $F_\sigma$-discrete Fréchet space having the Souslin property.Comment. Math. Univ. Carolin. 25 (1984), no. 2, 257–260. MR 0768812
Reference: [13] Xuan W.F., Shi W.X.: A note on spaces with a rank $3$-diagonal.Bull. Aust. Math. Soc. 90 (2014), no. 3, 521–524. Zbl 1305.54036, MR 3270766, 10.1017/S0004972714000318
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_11.pdf 233.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo