[1] Agarwal, R. P., O'Regan, D.: 
Existence for set differential equations via multivalued operator equations. Differential Equations and Applications 5 1-5 Nova Science Publishers, New York (2007). 
MR 2353574[2] Ahmad, B., Sivasundaram, S.: 
$\phi_0$-stability of impulsive hybrid setvalued differential equations with delay by perturbing Lyapunov functions. Commun. Appl. Anal. 12 (2008), 137-145. 
MR 2191489 | 
Zbl 1185.34102[3] Anguraj, A., Vinodkumar, A., Chang, Y. K.: 
Existence results on impulsive stochastic functional differential inclusions with delays. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20 (2013), 301-318. 
MR 3098454 | 
Zbl 1268.34164[7] Bhaskar, T. G., Lakshmikantham, V., Devi, J. Vasundhara: 
Nonlinear variation of parameters formula for set differential equations in a metric space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63 (2005), 735-744. 
DOI 10.1016/j.na.2005.02.036 | 
MR 2188146 | 
Zbl 1153.34313[9] Burachik, R. S., Iusem, A. N.: 
Set-Valued Mappings and Enlargements of Monotone Operators. Springer Optimization and Its Applications. Springer, Berlin (2008). 
DOI 10.1007/978-0-387-69757-4 | 
MR 2353163[13] Blasi, F. S. De, Iervolino, F.: 
Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital., IV. Ser., 2 (1969), 491-501 Errata corrige ibid. 4 1969 699. 
MR 0265653 | 
Zbl 0195.38501[14] Dunford, N., Schwartz, J. T.: 
Linear Operators. I. General Theory. Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). 
MR 0117523 | 
Zbl 0084.10402[16] Hu, S., Papageorgiou, N. S.: 
Handbook of Multivalued Analysis. Volume I: Theory. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1997). 
MR 1485775 | 
Zbl 0887.47001[18] Kuratowski, K., Ryll-Nardzewski, C.: 
A general theorem on selectors. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. 
MR 0188994 | 
Zbl 0152.21403[19] Lakshmikantham, V., Bhaskar, T. G., Devi, J. Vasundhara: 
Theory of Set Differential Equations in a Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006). 
MR 2438229 | 
Zbl 1156.34003[24] Park, J. Y., Jeong, J. U.: 
Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays. Adv. Difference Equ. (electronic only) 2014 (2014), Article ID 17, 17 pages. 
DOI 10.1186/1687-1847-2014-17 | 
MR 3213919 | 
Zbl 1343.93017[26] Wang, P., Sun, W.: 
Practical stability in terms of two measures for set differential equations on time scales. Sci. World J. (2014), (2014), Article ID 241034, 7 pages. 
DOI 10.1155/2014/241034[27] Yun, Y. S.: On the estimation of approximate solution for SDI. Korean Annals Math. 20 (2003), 63-69.