Title:
|
Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point (English) |
Author:
|
MESMOULI, Mouataz Billah |
Author:
|
Ardjouni, Abdelouaheb |
Author:
|
Djoudi, Ahcene |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
129-142 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^{\prime }\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac{d}{dt}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \] The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$. (English) |
Keyword:
|
Fixed point |
Keyword:
|
stability |
Keyword:
|
delay |
Keyword:
|
stability |
Keyword:
|
nonlinear neutral equation |
Keyword:
|
large contraction mapping |
Keyword:
|
integral equation |
MSC:
|
34K20 |
MSC:
|
34K30 |
MSC:
|
34K40 |
MSC:
|
47H10 |
idZBL:
|
Zbl 06724368 |
. |
Date available:
|
2017-03-16T12:52:05Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146066 |
. |
Reference:
|
[1] Adıvar, M., Islam, M. N., Raffoul, Y. N.: Separate contraction and existence of periodic solution in totally nonlinear delay differential equations.. Hacettepe Journal of Mathematics and Statistics, 41, 1 (2012), 1–13. MR 2976906 |
Reference:
|
[2] Ardjouni, A., Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays.. Nonlin. Anal., T.M.A., 74, 6 (2011), 2062–2070. Zbl 1216.34069, MR 2781737, 10.1016/j.na.2010.10.050 |
Reference:
|
[3] Ardjouni, A., Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays.. Opuscula Mathematica, 32, 1 (2012), 5–19. MR 2852465, 10.7494/OpMath.2012.32.1.5 |
Reference:
|
[4] Ardjouni, A., Derrardjia, I., Djoudi, A.: Stability in totally nonlinear neutral differential equations with variable delay.. Acta Math. Univ. Comenianae, 83, 1 (2014), 119–134. Zbl 1324.34142, MR 3178164 |
Reference:
|
[5] Burton, T. A.: Integral equations, implicit functions, and fixed points.. Proc. Amer. Math. Soc., 124, 8 (1996), 2383–2390. Zbl 0873.45003, MR 1346965, 10.1090/S0002-9939-96-03533-2 |
Reference:
|
[6] Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem.. Nonlinear Stud., 9 (2002), 181–190. MR 1898587 |
Reference:
|
[7] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations.. Dover Publications, New York, 2006. Zbl 1160.34001, MR 2281958 |
Reference:
|
[8] Burton, T. A.: Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem.. Nonlinear Stud., 9 (2001), 181–190. MR 1898587 |
Reference:
|
[9] Burton, T. A.: Stability by fixed point theory or Liapunov’s theory: A comparison.. Fixed Point Theory, 4 (2003), 15–32. MR 2031819 |
Reference:
|
[10] Burton, T. A.: Fixed points and stability of a nonconvolution equation.. Proc. Amer. Math. Soc., 132 (2004), 3679–3687. Zbl 1050.34110, MR 2084091, 10.1090/S0002-9939-04-07497-0 |
Reference:
|
[11] Burton, T. A., Kirk, C.: A point theorem of Krasnoselskii–Schaefe type.. Math. Nachr., 189 (1998), 23–31. MR 1492921, 10.1002/mana.19981890103 |
Reference:
|
[12] Burton, T. A., Furumochi, T.: Krasnoselskii’s fixed point theorem and stability.. Nonlinear Anal., 49 (2002), 445–454. Zbl 1015.34046, MR 1886230, 10.1016/S0362-546X(01)00111-0 |
Reference:
|
[13] Burton, T. A., Furumochi, T.: A note on stability by Schauder’s theorem.. Funkcial. Ekvac., 44 (2001), 73–82. Zbl 1158.34329, MR 1847837 |
Reference:
|
[14] Burton, T. A., Furumochi, T.: Fixed points and problems in stability theory.. Dynam. Systems Appl., 10 (2001), 89–116. Zbl 1021.34042, MR 1844329 |
Reference:
|
[15] Burton, T. A., Furumochi, T.: Krasnoselskii’s fixed point theorem and stability.. Nonlinear Anal., 49 (2002), 445–454. Zbl 1015.34046, MR 1886230, 10.1016/S0362-546X(01)00111-0 |
Reference:
|
[16] Burton, T. A., Furumochi, T.: Asymptotic behavior of solutions of functional differential equations by fixed point theorems.. Dynam. Systems Appl., 11 (2002), 499–519. Zbl 1044.34033, MR 1946140 |
Reference:
|
[17] Deham, H., Djoudi, A.: Periodic solutions for nonlinear differential equation with functional delay.. Georgian Math. J., 15, 4 (2008), 635–642. Zbl 1171.47061, MR 2494962 |
Reference:
|
[18] Deham, H., Djoudi, A.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay.. Electron. J. Differential Equations, 2010, 127 (2010), 1–8. Zbl 1203.34110 |
Reference:
|
[19] Djoudi, A., Khemis, R.: Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays.. Georgian Math. J., 13, 1 (2006), 25–34. Zbl 1104.34052, MR 2242326 |
Reference:
|
[20] Derrardjia, I., Ardjouni, A., Djoudi, A.: Stability by Krasnoselskii’s theorem in totally nonlinear neutral differential equation.. Opuscula Math., 33, 2 (2013), 255–272. MR 3023531, 10.7494/OpMath.2013.33.2.255 |
Reference:
|
[21] Dib, Y. M., Maroun, M. R., Raffoul, Y. N.: Periodicity and stability in neutral nonlinear differential equations with functional delay.. Electronic Journal of Differential Equations, 2005, 142 (2005), 1–11. Zbl 1097.34049, MR 2181286 |
Reference:
|
[22] Hatvani, L.: Annulus arguments in the stability theory for functional differential equations.. Differential and Integral Equations, 10 (1997), 975–1002. Zbl 0897.34060, MR 1741762 |
Reference:
|
[23] Hale, J. K.: Theory of Functional Differential Equation.. Springer, New York, 1977. MR 0508721 |
Reference:
|
[24] Raffoul, Y. R.: Stability in neutral nonlinear differential equations with functional delays using fixed-point theory.. Mathematical and Computer Modelling, 40 (2004), 691–700. Zbl 1083.34536, MR 2106161, 10.1016/j.mcm.2004.10.001 |
Reference:
|
[25] Smart, D. S.: Fixed point theorems; Cambridge Tracts in Mathematics.. 66, Cambridge University Press, London–New York, 1974. MR 0467717 |
Reference:
|
[26] Tunc, C.: Uniformly stability and boundedness of solutions of second order nonlinear delay differential equations.. Appl. Comput. Math., 10, 3 (2011), 449–462. Zbl 1281.34120, MR 2893512 |
Reference:
|
[27] Tunc, C.: On the stability and boundedness of solutions of a class of non-autonomous differential equations of second order with multiple deviating arguments.. Afr. Mat., 23, 2 (2012), 249–259. MR 2958972, 10.1007/s13370-011-0033-y |
Reference:
|
[28] Tunc, C.: A note on the stability and boundedness of non-autonomous differential equations of second order with a variable deviating argument.. Afr. Mat., 25, 2 (2014), 417–425. Zbl 1306.34113, MR 3207028, 10.1007/s13370-012-0126-2 |
Reference:
|
[29] Zhang, B.: Fixed points and stability in differential equations with variable delays.. Nonlinear Anal., 63 (2005), 233–242. Zbl 1159.34348, 10.1016/j.na.2005.02.081 |
. |