Previous |  Up |  Next

Article

Title: Instrumental weighted variables under heteroscedasticity. Part I – Consistency (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 1
Year: 2017
Pages: 1-25
Summary lang: English
.
Category: math
.
Summary: The proof of consistency instrumental weighted variables, the robust version of the classical instrumental variables is given. It is proved that all solutions of the corresponding normal equations are contained, with high probability, in a ball, the radius of which can be selected - asymptotically - arbitrarily small. Then also $\sqrt{n}$-consistency is proved. An extended numerical study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples under various types and levels of contamination as well as various extent of heteroscedasticity. The estimator in question is compared with two other estimators of the type of “robust instrumental variables” and the results indicate that our estimator gives comparatively good results and for some situations it is better. The discussion on a way of selecting the weights is also offered. The conclusions show the resemblance of our estimator with the $M$-estimator with Hampel's $\psi$-function. The difference is that our estimator does not need the studentization of residuals (which is not a simple task) to be scale- and regression-equivariant while the $M$-estimator does. So the paper demonstrates that we can directly compute - moreover by a quick algorithm (reliable and reasonably quick even for tens of thousands of observations) - the scale- and the regression-equivariant estimate of regression coefficients. (English)
Keyword: weighting order statistics of the squared residuals
Keyword: consistency of the instrumental weighted variables
Keyword: heteroscedasticity of disturbances
Keyword: numerical study
MSC: 62F35
MSC: 62J02
idZBL: Zbl 06738592
idMR: MR3638554
DOI: 10.14736/kyb-2017-1-0001
.
Date available: 2017-04-03T10:43:47Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146704
.
Reference: [1] Amemiya, T.: Two stage least absolute deviation estimators..Econometrica 50 (1982), 689-711. MR 0662726, 10.2307/1912608
Reference: [2] Atkinson, A. C., Riani, M., Cerioli, A.: Exploring Multivariate Data with the Forward Search..Springer Series in Statistics 2004, 31-88. Zbl 1049.62057, MR 2055967, 10.1007/978-0-387-21840-3_2
Reference: [3] Beran, R.: An efficient and robust adaptive estimator of location..Ann. Statist. 6 (1978), 292-313. Zbl 0378.62051, MR 0518885, 10.1214/aos/1176344125
Reference: [4] Bowden, R. J., Turkington, D. A.: Instrumental variables..Cambridge Univ. Press, Cambridge 1984. Zbl 0744.62149, MR 0798790, 10.1017/ccol0521262410
Reference: [5] Bramati, C. M., Croux, C.: Robust estimators for the fixed effects panel data model..The Econometr. J. 10 (2077), 521-540. Zbl 1126.62014, 10.1111/j.1368-423x.2007.00220.x
Reference: [6] Breiman, L.: Probability..Addison-Wesley Publishing Company, London 1968. Zbl 0753.60001, MR 0229267
Reference: [7] Čížek, P.: Generalized method of trimmed moments..J. Statist. Planning Inference 171 (2009), 63-78. Zbl 1336.62108, MR 3458068, 10.1016/j.jspi.2015.11.004
Reference: [8] Cochrane, D., Orcutt, G. H.: Application of least squares regression to relationhips containing autocorrelated error terms..J. Amer. Statist. Assoc. 44 (1949), 32-61. 10.1080/01621459.1949.10483290
Reference: [9] Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H.: A New Robust Instrumental Variables Estimator..
Reference: [10] Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H.: Natural robustification of the ordinary instrumental variables estimator..Biometrics 69 (2013), 641-650. MR 3106592, 10.1111/biom.12043
Reference: [11] Croux, C., Aelst, S. Van, Dehon, C.: Bounded influence regression using high breakdown scatter matrices..Ann. Inst. Statist. Math. 55 (2013), 265-285. MR 2001864, 10.1007/bf02530499
Reference: [12] Davies, P. L.: Asymptotic behavior of $S$-estimates of multivariate location parameters and dispersion matrices..Ann. Statist. 15 (1987), 1269-1292. MR 0902258, 10.1214/aos/1176350505
Reference: [13] (1952), M. Donsker: Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems..Ann. Math. Statist. 23 (1952), 277-281. MR 0047288, 10.1214/aoms/1177729445
Reference: [14] Eicker, F.: Asymptotic normality and consistency of the least squares estimators for families of linear regressions..Ann. Math. Stat. 34 (1963), 447-456. Zbl 0111.34003, MR 0148177, 10.1214/aoms/1177704156
Reference: [15] Eicker, F.: Limit theorems for regression with unequal and dependent errors..In: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability (L. Le Cam and J. Neyman, eds.), University of California Press, Berkeley 1967. MR 0214223
Reference: [16] Fabián, Z.: Induced cores and their use in robust parametric estimation..Comm. Statist. - Theory and Methods 30 (2001), 537-555. Zbl 1009.62534, MR 1862941, 10.1214/aoms/1177704156
Reference: [17] Fabián, Z.: New measures of central tendency and variability of continuous distributions..Comm. Statist. - Theory and Methods 37 (2008), 159-174. Zbl 1318.62009, MR 2412617, 10.1080/03610920701648987
Reference: [18] Field, C. A., (1990), E. M. Ronchetti: Small Sample Asymptotics..Institute of Mathematical Statistics Monograph Series, Hayward 1990. MR 1088480
Reference: [19] Fisher, R. A.: A mathematical examination of the methods of determining the accuracy of an observation by the mean error and by the mean squares error..Monthly Notes Royal Astronomical Society 80 (1920), 758-770. 10.1093/mnras/80.8.758
Reference: [20] Fisher, R. A.: Statistical Methods for Research Workers. Second edition.(1928). MR 0346954
Reference: [21] Galton, F.: Regression towards mediocrity in hereditary stature..J. Anthropol. Inst. 15 (1886), 246-263. 10.2307/2841583
Reference: [22] Greene, W. H.: Econometric Analysis..Macmillam Press, New York 1993.
Reference: [23] Hájek, J., Šidák, Z.: Theory of Rank Test..Academic Press, New York 1967. MR 0229351
Reference: [24] Halmos, P. R.: Applied mathematics is a bad mathematics..In: Mathematics Tomorrow (L. Steen, ed.), Springer Verlag, New York 1981, pp. 9-20. MR 0618280, 10.1007/978-1-4613-8127-3_2
Reference: [25] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.: Robust Statistics - The Approach Based on Influence Functions. J. Wiley and Sons, New York 1986.. MR 0829458, 10.1002/9781118186435
Reference: [26] Hansen, L. P.: Large sample properties of generalized method of moments estimators..Econometrica 50 (1982), 1029-1054. Zbl 0502.62098, MR 0666123, 10.2307/1912775
Reference: [27] Harvey, A. C.: Estimating regression models with multiplicative heteroscedasticity..Econometrica 44 (1976), 461-465. Zbl 0333.62040, MR 0411063, 10.2307/1913974
Reference: [28] Hausman, J., Newey, W., Voutersen, T., Chao, J., Swanson, N.: Instrumental variable estimation with heteroscedasticity and many instruments..Quantitative Economics 3 (2012), 211-255. MR 2957106, 10.3982/qe89
Reference: [29] Helland, I. S.: Partial Least Squares Regression and Statistical Models..Scand. J. Statist. 17 (1990), 97-114. Zbl 0713.62062, MR 1085924
Reference: [30] Hettmansperger, T. P., Sheather, S. J.: A cautionary note on the method of least median squares..Amer. Statist. 46 (1992), 79-83. MR 1165565, 10.2307/2684169
Reference: [31] Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., Lee, T. C.: The Theory and Practice of Econometrics. Second edition..J. Wiley and Sons, New York 1985. MR 1007139
Reference: [32] Jurečková, J.: Regression quantiles and trimmed least squares estimator under a general design..Kybernetika 20 (1984), 345-357. Zbl 0561.62027, MR 0776325
Reference: [33] Kmenta, J.: Elements of Econometrics..Macmillan Publishing Company, New York 1986. Zbl 0935.62129, 10.3998/mpub.15701
Reference: [34] Krasker, W. S.: Two-stage bounded-influence estimators for simultaneous equations models..J. Business Econom. Statist. 4 (1986), 437-444. 10.2307/1391499
Reference: [35] Krasker, W. S., Welsch, R. E.: Resistant estimation for simultaneous - equations models using weighted instrumental variables..Econometrica 53 (1985), 1475-1488. Zbl 0583.62095, MR 0809921, 10.2307/1913223
Reference: [36] Krishnakumar, J., Ronchetti, E.: Robust-estimators for simultaneous equations models..J. Econometr. 78 (1997), 295-314. Zbl 0900.62652, MR 1453482, 10.1016/s0304-4076(97)80014-0
Reference: [37] Lopuhaa, H. P.: On the relations between $S$-estimators and $M$-estimatros of multivariate location and covariance..Ann. Statist. 17 (1989), 1662-1683. MR 1026304, 10.1214/aos/1176347386
Reference: [38] Maronna, R. A., Morgenthaler, S.: Robust regression through robust covariances..Comm. Statist. - Theory and Methods 15 (1986), 1347-1365. Zbl 0639.62023, MR 0836601, 10.1080/03610928608829187
Reference: [39] Maronna, R. A., Yohai, V. J.: Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers..Zeitschrift fűr Wahrscheinlichkeitstheorie und verwandte Gebiete 58 (1981), 7-20. MR 0635268, 10.1007/bf00536192
Reference: [40] Maronna, R. A., Yohai, V. J.: Robust estimation in simultaneous equations models..J. Statist. Planning Inference 57 (1997), 233-244. Zbl 0900.62173, MR 1440237, 10.1016/s0378-3758(96)00046-8
Reference: [41] Mašíček, L.: Optimality of the least weighted squares estimator..Kybernetika 40 (2004), 715-734. Zbl 1245.62013, MR 2120393
Reference: [42] Mizon, G. E.: A simple message for autocorrelation correctors: Don't..J. Econometr. 69 (1995), 267-288. Zbl 0831.62100, MR 1354668, 10.1016/0304-4076(94)01671-l
Reference: [43] Paige, C. C., Strakoš, Z.: Scaled total least squares fundamentals..Numer. Math. 91 (2002), 117-146. Zbl 0998.65046, MR 1896090, 10.1007/s002110100314
Reference: [44] Phillips, P. C. B., Solo, V.: Asymptotics for linear processes..Ann. Statist. 20 (1992), 971-1001. Zbl 0759.60021, MR 1165602, 10.1214/aos/1176348666
Reference: [45] Popper, K. R.: The Logic of Scientific Discovery..(Logik der Forscung, Springer, Vienna 1935). Hutchinson and co., New York 1952. Zbl 1256.03001, MR 0107593
Reference: [46] Portnoy, S.: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles..In: Robust and Nonlinear Time - Series Analysis (J. Franke, W. H\H{a}rdle, and D. Martin, eds.), Springer Verlag, New York 1983, pp. 231-246. Zbl 0568.62065, MR 0786311, 10.1007/978-1-4615-7821-5_13
Reference: [47] Rao, R. C.: Estimation of heteroscedastic variances in linear models..J. Amer. Statist. Assoc. 65 (1970), 161-172. MR 0286221, 10.2307/2283583
Reference: [48] Rao, R. C.: Linear Statistical Inference and Its Applications..J. Wiley and Sons, New York 1973. Zbl 0256.62002, MR 0346957, 10.1002/9780470316436
Reference: [49] Robinson, P. M.: Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form..Econometrica 55 (1987), 875-891. Zbl 0651.62107, MR 0906567, 10.2307/1911033
Reference: [50] Ronchetti, E., Trojani, F.: Robust inference with GMM estimators..J. Econometrics 101 (2001), 37-69. Zbl 0996.62026, MR 1805872, 10.1016/s0304-4076(00)00073-7
Reference: [51] Rousseeuw, P. J.: Least median of square regression..J. Amer. Statist. Assoc. 79 (1984), 871-880. MR 0770281, 10.1080/01621459.1984.10477105
Reference: [52] Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection..J. Wiley and Sons, New York 1987. Zbl 0711.62030, MR 0914792, 10.1002/0471725382
Reference: [53] Rousseeuw, P. J., Yohai, V.: Robust regressiom by means of $S$-estimators..In: Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle, and R. D. Martin, eds.), Lecture Notes in Statistics 26 Springer Verlag, New York 1984, pp. 256-272. MR 0786313, 10.1007/978-1-4615-7821-5_15
Reference: [54] Štěpán, J.: Teorie pravděpodobnosti (Probability Theory)..Academia, Praha 1987.
Reference: [55] Huffel, S. Van: Total least squares and error-in-variables modelling: Bridging the gap between statistics, computational mathematics and enginnering..In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica Verlag/Springer, Heidelberg 2004, pp. 539-555. MR 2173049, 10.1007/978-3-7908-2656-2_44
Reference: [56] Víšek, J. Á.: A cautionary note on the method of Least Median of Squares reconsidered..In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (P. Lachout, ed.), Academy of Sciences of the Czech Republic, Praha 1994, pp. 254-259.
Reference: [57] Víšek, J. Á.: Robust instruments..In: Robust'98 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 1998, pp. 195-224.
Reference: [58] Víšek, J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy..In: Proc. Conference Macromodels'99, Wroclaw University 1999, pp. 424-445.
Reference: [59] Víšek, J. Á.: Regression with high breakdown point..In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 2000, pp. 324-356.
Reference: [60] Víšek, J. Á.: The least weighted squares I. The asymptotic linearity of normal equations..Bull. Czech Econometr. Soc. 9 (2002), 31-58.
Reference: [61] Víšek, J. Á.: The least weighted squares II. Consistency and asymptotic normality..Bull. Czech Econometr. Soc. 9 (2002), 1-28. MR 2208518
Reference: [62] Víšek, J. Á.: Development of the Czech export in nineties..In: Konsolidace vládnutí a podnikání v České republice a v Evropské unii I. Umění vládnout, ekonomika, politika, Matfyzpress, Praha 2003, pp. 193-220.
Reference: [63] Víšek, J. Á.: Robustifying instrumental variables..In: Proc. COMPSTAT'2004 (J. Antoch, ed.), Physica Verlag/Springer, pp. 1947-1954. MR 2173224, 10.1007/978-3-7908-2656-2
Reference: [64] Víšek, J. Á.: Instrumental weighted variables - algorithm..In: Proc. COMPSTAT 2006 (A. Rizzi and M. Vichi, eds.), Physica Verlag/Springer, Heidelberg 2006, pp. 777-786. MR 2173224, 10.1007/978-3-7908-1709-6
Reference: [65] Víšek, J. Á.: Kolmogorov-Smirnov statistics in multiple regression..In: Proc. ROBUST 2006 (J. Antoch and G. Dohnal, eds.), pp. 367-374.
Reference: [66] Víšek, J. Á.: Consistency of the instrumental weighted variables..Ann. Inst. Statist. Math. 61 (2009), 543-578. Zbl 1332.62246, MR 2529966, 10.1007/s10463-007-0159-8
Reference: [67] Víšek, J. Á.: Robust error - term - scale estimate..In: IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 2010, pp. 254-267. MR 2808385, 10.1007/s10463-007-0159-8
Reference: [68] Víšek, J. Á.: Heteroscedasticity resistant robust covariance matrix estimator..Bull. Czech Econometric Society 17 (2010), 33-49.
Reference: [69] Víšek, J. Á.: Consistency of the least weighted squares under heteroscedasticity..Kybernetika 47 (2011), 179-206. Zbl 1228.62026, MR 2828572
Reference: [70] Víšek, J. Á.: Weak $\sqrt{n}$ - consistency of the least weighted squares under heteroscedasticity..Acta Universitatis Carolinae, Mathematica et Physica 2 (2011), 51, 71-82. Zbl 1228.62026, MR 2808296
Reference: [71] Víšek, J. Á.: Empirical distribution function under heteroscedasticity..Statistics 45 (2011), 497-508. Zbl 1229.62050, MR 2832181, 10.1080/02331881003768891
Reference: [72] Víšek, J. Á.: Robustifying estimation of the model with fixed and random effects. Part I - Theoretical considerations. Part II - Numerical study..Workshop on Algorithm for Outliers/regressors Selection organized by Bent Nielsen, Nuffield College, Oxford 2013. Methodology and Computing in Applied Probability 17 (2014), 4, 999-1014. 10.1007/s11009-014-9432-5
Reference: [73] Wagenvoort, R., Waldmann, R.: On $B$-robust instrumental variable estimation of the linear model with panel data..J. Econometr. 106 (2002), 297-324. Zbl 1038.62061, MR 1885372, 10.1016/s0304-4076(01)00102-6
Reference: [74] White, H.: A heteroskedasticity - consistent covariance matrix estimator and a direct test for heteroscedasticity..Econometrica 48 (1980), 817-838. MR 0575027, 10.2307/1912934
Reference: [75] Wooldridge, J. M.: Econometric Analysis of Cross Section and Panel Data..MIT Press, Cambridge 2001. (Second edition 2008.) Zbl 1327.62009, MR 2768559
Reference: [76] Wooldridge, J. M.: Introductory Econometrics. A Modern Approach..MIT Press, Cambridge 2006. (Second edition 2009.)
.

Files

Files Size Format View
Kybernetika_53-2017-1_1.pdf 474.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo