Previous |  Up |  Next

Article

Title: Weighted Frobenius-Perron operators and their spectra (English)
Author: Jabbarzadeh, Mohammad Reza
Author: Hajipouri, Rana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 2
Year: 2017
Pages: 113-124
Summary lang: English
.
Category: math
.
Summary: First, some classic properties of a weighted Frobenius-Perron operator $\mathcal {P}_\varphi ^u$ on $L^1(\Sigma )$ as a predual of weighted Koopman operator $W=uU_\varphi $ on $L^\infty (\Sigma )$ will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of $\mathcal {P}_\varphi ^u$ under certain conditions. (English)
Keyword: Frobenius-Perron operator
Keyword: Fredholm operator
Keyword: spectrum
MSC: 11Y50
MSC: 47A10
MSC: 47B20
MSC: 47B38
idZBL: Zbl 06738573
idMR: MR3660169
DOI: 10.21136/MB.2016.0079-15
.
Date available: 2017-05-23T09:56:25Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146745
.
Reference: [1] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges: A Study of Finitely Additive Measures.Pure and Applied Mathematics 109, Academic Press, London (1983). Zbl 0516.28001, MR 0751777
Reference: [2] Campbell, J. T., Jamison, J. E.: On some classes of weighted composition operators.Glasg. Math. J. 32 (1990), 87-94 corrigendum on pages 261-263\kern1pt. Zbl 0705.47027, MR 1045089, 10.1017/S0017089500009095
Reference: [3] Ding, J.: A closed range theorem for the Frobenius-Perron operator and its application to the spectral analysis.J. Math. Anal. Appl. 184 (1994), 156-167. Zbl 0804.47032, MR 1275951, 10.1006/jmaa.1994.1191
Reference: [4] Ding, J.: The Frobenius-Perron operator as a product of two operators.Appl. Math. Lett. 9 (1996), 63-65. Zbl 0857.47016, MR 1386001, 10.1016/0893-9659(96)00033-X
Reference: [5] Ding, J.: The point spectrum of Frobenius-Perron and Koopman operators.Proc. Am. Math. Soc. 126 (1998), 1355-1361. Zbl 0892.47010, MR 1443148, 10.1090/S0002-9939-98-04188-4
Reference: [6] Ding, J., Du, Q., Li, T. Y.: The spectral analysis of Frobenius-Perron operators.J. Math. Anal. Appl. 184 (1994), 285-301. Zbl 0830.47022, MR 1278389, 10.1006/jmaa.1994.1200
Reference: [7] Ding, J., Hornor, W. E.: A new approach to Frobenius-Perron operators.J. Math. Anal. Appl. 187 (1994), 1047-1058. Zbl 0819.47043, MR 1298836, 10.1006/jmaa.1994.1405
Reference: [8] Ding, J., Zhou, A.: On the spectrum of Frobenius-Perron operators.J. Math. Anal. Appl. 250 (2000), 610-620. Zbl 0991.47014, MR 1786085, 10.1006/jmaa.2000.7003
Reference: [9] Ding, J., Zhou, A.: Statistical Properties of Deterministic Systems.Tsinghua University Texts. Springer, Berlin; Tsinghua University Press, Beijing (2009). Zbl 1171.37001, MR 2518822, 10.1007/978-3-540-85367-1
Reference: [10] Jabbarzadeh, M. R.: Weighted Frobenius-Perron and Koopman operators.Bull. Iran. Math. Soc. 35 (2009), 85-96. Zbl 1203.47018, MR 2642928
Reference: [11] Jabbarzadeh, M. R.: A conditional expectation type operator on $L^p$ spaces.Oper. Matrices 4 (2010), 445-453. Zbl 1217.47068, MR 2680958, 10.7153/oam-04-24
Reference: [12] Jabbarzadeh, M. R., Emamalipour, H.: Compact weighted Frobenius-Perron operators and their spectra.Bull. Iran. Math. Soc. 38 (2012), 817-826. Zbl 06283466, MR 3028472
Reference: [13] Jabbarzadeh, M. R., Bakhshkandi, M. Jafari: Stability constants for weighted composition operators.To appear in Bull. Belg. Math. Soc.-Simon Stevin.
Reference: [14] Rao, M. M.: Conditional Measures and Applications.Pure and Applied Mathematics (Boca Raton) 271, Chapman & Hall/CRC, Boca Raton (2005). Zbl 1079.60008, MR 2149673
Reference: [15] Yosida, K.: Functional Analysis.Classics in Mathematics. Vol. 123, Springer, Berlin (1995). Zbl 0830.46001, MR 1336382, 10.1007/978-3-642-61859-8
Reference: [16] Zaanen, A. C.: Integration.North-Holland, Amsterdam (1967). Zbl 0175.05002, MR 0222234
.

Files

Files Size Format View
MathBohem_142-2017-2_1.pdf 277.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo