Previous |  Up |  Next

Article

Title: Statisch pairs in atomistic posets (English)
Author: Vaezi, Alireza
Author: Kharat, Vilas
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 2
Year: 2017
Pages: 125-136
Summary lang: English
.
Category: math
.
Summary: We introduce statisch pairs in atomistic posets and study its relationships with some known concepts in posets such as biatomic and dual modular pairs, perspectivity and subspaces of atom space of an atomistic poset. We generalize the notion of exchange property in posets and with the help of it we prove the equivalence of dual modular, biatomic and statisch pairs in atomistic posets. Also, we prove that the set of all finite elements of a statisch poset with such property forms an ideal. $\nabla $-relation is partly studied by means of statisch pairs. (English)
Keyword: atomistic poset
Keyword: statisch pair
Keyword: finite element
MSC: 06A06
MSC: 06A11
idZBL: Zbl 06738574
idMR: MR3660170
DOI: 10.21136/MB.2016.0076-13
.
Date available: 2017-05-23T09:57:07Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146747
.
Reference: [1] Janowitz, M. F.: On the modular relation in atomistic lattices.Fundam. Math. 66 (1970), 337-346. Zbl 0193.33901, MR 0260635, 10.4064/fm-66-3-337-346
Reference: [2] Janowitz, M. F.: Examples of statisch and finite statisch AC-lattices.Fundam. Math. 89 225-227 (1975). Zbl 0321.06009, MR 0382095, 10.4064/fm-89-3-225-227
Reference: [3] Maeda, F., Maeda, S.: Theory of Symmetric Lattices.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 173. Springer, Berlin (1970). Zbl 0219.06002, MR 0282889, 10.1007/978-3-642-46248-1
Reference: [4] Shewale, R. S.: Modular Pairs, Forbidden Configurations and Related Aspects in Partially Ordered Sets.Ph. D. Thesis, University of Pune, Pune (INDIA) (2010).
Reference: [5] Thakare, N. K., Maeda, S., Waphare, B. N.: Modular pairs, covering property and related results in posets.J. Indian Math. Soc. (N.S.) 70 229-253 (2003). Zbl 1117.06300, MR 2290805
Reference: [6] Vaezi, A., Kharat, V.: Completeness and compact generation in partially ordered sets.J. Math. Computer Sci. (electronic only) 1 (2016), 69-76. Avaible at http://www.isr-publications.com/jmcs/volume-16/issue-1. 10.22436/jmcs.016.01.07
Reference: [7] Waphare, B. N.: Symmetricity in Posets, Comparability Axioms in Orthomodular Lattices with Applications.Ph. D. Thesis, University of Pune, Pune, India (1992).
Reference: [8] Waphare, B. N., Joshi, V. V.: Distributive pairs in biatomic lattices.Acta. Math. Univ. Comen., New Ser. 73 (2004), 69-73. Zbl 1094.06007, MR 2076044
Reference: [9] Waphare, B. N., Joshi, V. V.: Biatomic pairs in posets.Southeast Asian Bull. Math. 31 (2007), 789-800. Zbl 1150.06005, MR 2363032
Reference: [10] Waphare, B. N., Joshi, V. V.: Distributive pairs in posets.Southeast Asian Bull. Math. 31 (2007), 1205-1233. Zbl 1150.06006, MR 2386998
Reference: [11] Wasadikar, M. P., Thakare, N. K.: $p$-elements and statisch pairs in lattices.Publ. Cent. Rech. Math. Pures Sér. I 27 (1996), 1-5. Zbl 0842.06004
Reference: [12] Wille, R.: Halbkomplementäre Verbände.Math. Z. 94 (1966), 1-31. Zbl 0144.00704, MR 0216989, 10.1007/BF01111258
.

Files

Files Size Format View
MathBohem_142-2017-2_2.pdf 260.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo