Title:
|
Goldie extending elements in modular lattices (English) |
Author:
|
Nimbhorkar, Shriram K. |
Author:
|
Shroff, Rupal C. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
142 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
163-180 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations of a decomposition of a Goldie extending element in such a lattice are given. The concepts of an $a$-injective and an $a$-ejective element are introduced in a lattice and their properties related to extending elements are discussed. (English) |
Keyword:
|
modular lattice |
Keyword:
|
Goldie extending element |
MSC:
|
06B10 |
MSC:
|
06C05 |
idZBL:
|
Zbl 06738577 |
idMR:
|
MR3660173 |
DOI:
|
10.21136/MB.2016.0049-14 |
. |
Date available:
|
2017-05-23T09:59:22Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146750 |
. |
Reference:
|
[1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Corrigendum to: Goldie extending modules.Commun. Algebra 41 (2013), page 2005. Original article ibid. {\it 37} (2009), 663-683 and first correction in {\it 38} (2010), 4747-4748. Zbl 1278.16005, MR 3062842, 10.1080/00927872.2011.651766 |
Reference:
|
[2] Călugăreanu, G.: Lattice Concepts of Module Theory.Kluwer Texts in the Mathematical Sciences 22. Kluwer Academic Publishers, Dordrecht (2000). Zbl 0959.06001, MR 1782739, 10.1007/978-94-015-9588-9 |
Reference:
|
[3] Chatters, A. W., Hajarnavis, C. R.: Rings in which every complement right ideal is a direct summand.Q. J. Math., Oxf. (2) 28 (1977), 61-80. Zbl 0342.16023, MR 0437595, 10.1093/qmath/28.1.61 |
Reference:
|
[4] Crawley, P., Dilworth, R. P.: Algebraic Theory of Lattices.Prentice-Hall, Englewood Cliffs, New Jersey (1973). Zbl 0494.06001 |
Reference:
|
[5] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules.Pitman Research Notes in Mathematics Series 313. Longman Scientific & Technical, Harlow (1994). Zbl 0841.16001, MR 1312366 |
Reference:
|
[6] Er, N.: Rings whose modules are direct sums of extending modules.Proc. Am. Math. Soc. 137 (2009), 2265-2271. Zbl 1176.16006, MR 2495259, 10.1090/S0002-9939-09-09807-4 |
Reference:
|
[7] Grätzer, G.: General Lattice Theory.Birkhäuser, Basel (1998). Zbl 0909.06002, MR 1670580 |
Reference:
|
[8] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions.J. Pure Appl. Algebra 31 (1984), 47-54. Zbl 0528.16010, MR 0738204, 10.1016/0022-4049(84)90075-6 |
Reference:
|
[9] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules.Houston J. Math. 19 (1993), 523-532. Zbl 0802.16006, MR 1251607 |
Reference:
|
[10] Kamal, M. A., Sayed, A.: On generalized extending modules.Acta Math. Univ. Comen., New Ser. 76 (2007), 193-200. Zbl 1156.16005, MR 2385032 |
Reference:
|
[11] Keskin, D.: An approach to extending and lifting modules by modular lattices.Indian J. Pure Appl. Math. 33 (2002), 81-86. Zbl 0998.16004, MR 1879786 |
Reference:
|
[12] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8 |
Reference:
|
[13] Szász, G.: Introduction to Lattice Theory.Academic Press, New York; Akadémiai Kiadó, Budapest (1963). Zbl 0126.03703, MR 0166118 |
. |