Title:
|
A note on model structures on arbitrary Frobenius categories (English) |
Author:
|
Li, Zhi-wei |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
329-337 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category $\mathcal {F}$ such that the homotopy category of this model structure is equivalent to the stable category $\underline {\mathcal {F}}$ as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When $\mathcal {F}$ is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact (closed) model structure in the sense of Gillespie (2011). (English) |
Keyword:
|
Frobenius categorie |
Keyword:
|
triangulated categories |
Keyword:
|
model structure |
MSC:
|
18E10 |
MSC:
|
18E30 |
MSC:
|
18E35 |
idZBL:
|
Zbl 06738522 |
idMR:
|
MR3661044 |
DOI:
|
10.21136/CMJ.2017.0582-15 |
. |
Date available:
|
2017-06-01T14:25:45Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146759 |
. |
Reference:
|
[1] Becker, H.: Models for singularity categories.Adv. Math. 254 (2014), 187-232. Zbl 06284998, MR 3161097, 10.1016/j.aim.2013.11.016 |
Reference:
|
[2] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories.Mem. Am. Math. Soc. 188 (2007), 207 pages. Zbl 1124.18005, MR 2327478, 10.1090/memo/0883 |
Reference:
|
[3] Bühler, T.: Exact categories.Expo. Math. 28 (2010), 1-69. Zbl 1192.18007, MR 2606234, 10.1016/j.exmath.2009.04.004 |
Reference:
|
[4] Dwyer, W. G., Spalinski, J.: Homotopy theories and model categories.Handbook of Algebraic Topology North-Holland, Amsterdam (1995), 73-126. Zbl 0869.55018, MR 1361887, 10.1016/B978-044481779-2/50003-1 |
Reference:
|
[5] Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory.Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer, New York (1967). Zbl 0186.56802, MR 0210125, 10.1007/978-3-642-85844-4 |
Reference:
|
[6] Gillespie, J.: Model structures on exact categories.J. Pure Appl. Algebra 215 (2011), 2892-2902. Zbl 1315.18019, MR 2811572, 10.1016/j.jpaa.2011.04.010 |
Reference:
|
[7] Gillespie, J.: Exact model structures and recollements.J. Algebra 458 (2016), 265-306. Zbl 06588435, MR 3500779, 10.1016/j.jalgebra.2016.03.021 |
Reference:
|
[8] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras.London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124, 10.1017/CBO9780511629228 |
Reference:
|
[9] Hirschhorn, P. S.: Model Categories and Their Localizations.Mathematical Surveys and Monographs 99, American Mathematical Society, Providence (2003). Zbl 1017.55001, MR 1944041 |
Reference:
|
[10] Hovey, M.: Model Categories.Mathematical Surveys and Monographs 63, American Mathematical Society, Providence (1999). Zbl 0909.55001, MR 1650134 |
Reference:
|
[11] Hovey, M.: Cotorsion pairs, model category structures, and representation theory.Math. Z. 241 (2002), 553-592. Zbl 1016.55010, MR 1938704, 10.1007/s00209-002-0431-9 |
Reference:
|
[12] Keller, B.: Chain complexes and stable categories.Manuscr. Math. 67 (1990), 379-417. Zbl 0753.18005, MR 1052551, 10.1007/BF02568439 |
Reference:
|
[13] Lane, S. Mac: Categories for the Working Mathematician.Graduate Texts in Mathematics 5, Springer, New York (1998). Zbl 0906.18001, MR 1712872 |
Reference:
|
[14] Quillen, D. G.: Homotopical Algebra.Lecture Notes in Mathematics 43, Springer, Berlin (1967). Zbl 0168.20903, MR 0223432, 10.1007/BFb0097438 |
Reference:
|
[15] Quillen, D.: Higher algebraic $K$-theory. I.Algebraic $K$-Theory I. Proc. Conf. Battelle Inst. 1972, Lecture Notes in Mathematics 341, Springer, Berlin (1973), 85-147. Zbl 0292.18004, MR 0338129, 10.1007/BFb0067053 |
. |