Previous |  Up |  Next

Article

Title: A note on model structures on arbitrary Frobenius categories (English)
Author: Li, Zhi-wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 329-337
Summary lang: English
.
Category: math
.
Summary: We show that there is a model structure in the sense of Quillen on an arbitrary Frobenius category $\mathcal {F}$ such that the homotopy category of this model structure is equivalent to the stable category $\underline {\mathcal {F}}$ as triangulated categories. This seems to be well-accepted by experts but we were unable to find a complete proof for it in the literature. When $\mathcal {F}$ is a weakly idempotent complete (i.e., every split monomorphism is an inflation) Frobenius category, the model structure we constructed is an exact (closed) model structure in the sense of Gillespie (2011). (English)
Keyword: Frobenius categorie
Keyword: triangulated categories
Keyword: model structure
MSC: 18E10
MSC: 18E30
MSC: 18E35
idZBL: Zbl 06738522
idMR: MR3661044
DOI: 10.21136/CMJ.2017.0582-15
.
Date available: 2017-06-01T14:25:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146759
.
Reference: [1] Becker, H.: Models for singularity categories.Adv. Math. 254 (2014), 187-232. Zbl 06284998, MR 3161097, 10.1016/j.aim.2013.11.016
Reference: [2] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories.Mem. Am. Math. Soc. 188 (2007), 207 pages. Zbl 1124.18005, MR 2327478, 10.1090/memo/0883
Reference: [3] Bühler, T.: Exact categories.Expo. Math. 28 (2010), 1-69. Zbl 1192.18007, MR 2606234, 10.1016/j.exmath.2009.04.004
Reference: [4] Dwyer, W. G., Spalinski, J.: Homotopy theories and model categories.Handbook of Algebraic Topology North-Holland, Amsterdam (1995), 73-126. Zbl 0869.55018, MR 1361887, 10.1016/B978-044481779-2/50003-1
Reference: [5] Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory.Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer, New York (1967). Zbl 0186.56802, MR 0210125, 10.1007/978-3-642-85844-4
Reference: [6] Gillespie, J.: Model structures on exact categories.J. Pure Appl. Algebra 215 (2011), 2892-2902. Zbl 1315.18019, MR 2811572, 10.1016/j.jpaa.2011.04.010
Reference: [7] Gillespie, J.: Exact model structures and recollements.J. Algebra 458 (2016), 265-306. Zbl 06588435, MR 3500779, 10.1016/j.jalgebra.2016.03.021
Reference: [8] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras.London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124, 10.1017/CBO9780511629228
Reference: [9] Hirschhorn, P. S.: Model Categories and Their Localizations.Mathematical Surveys and Monographs 99, American Mathematical Society, Providence (2003). Zbl 1017.55001, MR 1944041
Reference: [10] Hovey, M.: Model Categories.Mathematical Surveys and Monographs 63, American Mathematical Society, Providence (1999). Zbl 0909.55001, MR 1650134
Reference: [11] Hovey, M.: Cotorsion pairs, model category structures, and representation theory.Math. Z. 241 (2002), 553-592. Zbl 1016.55010, MR 1938704, 10.1007/s00209-002-0431-9
Reference: [12] Keller, B.: Chain complexes and stable categories.Manuscr. Math. 67 (1990), 379-417. Zbl 0753.18005, MR 1052551, 10.1007/BF02568439
Reference: [13] Lane, S. Mac: Categories for the Working Mathematician.Graduate Texts in Mathematics 5, Springer, New York (1998). Zbl 0906.18001, MR 1712872
Reference: [14] Quillen, D. G.: Homotopical Algebra.Lecture Notes in Mathematics 43, Springer, Berlin (1967). Zbl 0168.20903, MR 0223432, 10.1007/BFb0097438
Reference: [15] Quillen, D.: Higher algebraic $K$-theory. I.Algebraic $K$-Theory I. Proc. Conf. Battelle Inst. 1972, Lecture Notes in Mathematics 341, Springer, Berlin (1973), 85-147. Zbl 0292.18004, MR 0338129, 10.1007/BFb0067053
.

Files

Files Size Format View
CzechMathJ_67-2017-2_4.pdf 258.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo