Previous |  Up |  Next

Article

Title: A full multigrid method for semilinear elliptic equation (English)
Author: Xu, Fei
Author: Xie, Hehu
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 3
Year: 2017
Pages: 225-241
Summary lang: English
.
Category: math
.
Summary: A full multigrid finite element method is proposed for semilinear elliptic equations. The main idea is to transform the solution of the semilinear problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and semilinear problems on a very low dimensional space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient numerical methods can also serve as the linear solver for solving boundary value problems. The optimality of the computational work is also proved. Compared with the existing multigrid methods which need the bounded second order derivatives of the nonlinear term, the proposed method only needs the Lipschitz continuation in some sense of the nonlinear term. (English)
Keyword: semilinear elliptic problem
Keyword: full multigrid method
Keyword: multilevel correction
Keyword: finite element method
MSC: 35J61
MSC: 65B99
MSC: 65L15
MSC: 65N25
MSC: 65N30
MSC: 65N55
idZBL: Zbl 06738491
idMR: MR3661038
DOI: 10.21136/AM.2017.0344-16
.
Date available: 2017-06-01T14:35:21Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146779
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Bramble, J. H.: Multigrid Methods.Pitman Research Notes in Mathematics Series 294, John Wiley & Sons, New York (1993). Zbl 0786.65094, MR 1247694
Reference: [3] Bramble, J. H., Pasciak, J. E.: New convergence estimates for multigrid algorithms.Math. Comput. 49 (1987), 311-329. Zbl 0659.65098, MR 0906174, 10.2307/2008314
Reference: [4] Bramble, J. H., Zhang, X.: The analysis of multigrid methods.Handbook of Numerical Analysis. Vol. 7 North-Holland, Amsterdam (2000), 173-415. Zbl 0972.65103, MR 1804746, 10.1016/S1570-8659(00)07003-4
Reference: [5] Brandt, A., McCormick, S., Ruge, J.: Multigrid methods for differential eigenproblems.SIAM J. Sci. Stat. Comput. 4 (1983), 244-260. Zbl 0517.65083, MR 0697178, 10.1137/0904019
Reference: [6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15, Springer, New York (1994). Zbl 0804.65101, MR 1278258, 10.1007/978-1-4757-4338-8
Reference: [7] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/s0168-2024(08)x7014-6
Reference: [8] Hackbusch, W.: Multi-Grid Methods and Applications.Springer Series in Computational Mathematics 4, Springer, Berlin (1985). Zbl 0595.65106, MR 0814495, 10.1007/978-3-662-02427-0
Reference: [9] Huang, Y., Shi, Z., Tang, T., Xue, W.: A multilevel successive iteration method for nonlinear elliptic problems.Math. Comput. 73 (2004), 525-539. Zbl 1042.65101, MR 2028418, 10.1090/S0025-5718-03-01566-7
Reference: [10] Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems.Sci. China, Math. 59 (2016), 2037-2048. Zbl 1354.65236, MR 3549940, 10.1007/s11425-015-0234-x
Reference: [11] Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems.Math. Comput. 84 (2015), 71-88. Zbl 1307.65159, MR 3266953, 10.1090/S0025-5718-2014-02825-1
Reference: [12] Lin, Q., Xie, H., Xu, F.: Multilevel correction adaptive finite element method for semilinear elliptic equation.Appl. Math., Praha 60 (2015), 527-550. Zbl 06486924, MR 3396479, 10.1007/s10492-015-0110-x
Reference: [13] Scott, L. R., Zhang, S.: Higher-dimensional nonnested multigrid methods.Math. Comput. 58 (1992), 457-466. Zbl 0772.65077, MR 1122077, 10.2307/2153196
Reference: [14] Shaidurov, V. V.: Multigrid Methods for Finite Elements.Mathematics and Its Applications 318, Kluwer Academic Publishers, Dordrecht (1995). Zbl 0837.65118, MR 1335921, 10.1007/978-94-015-8527-9
Reference: [15] Toselli, A., Widlund, O. B.: Domain Decomposition Methods---Algorithms and Theory.Springer Series in Computational Mathematics 34, Springer, Berlin (2005). Zbl 1069.65138, MR 2104179, 10.1007/b137868
Reference: [16] Xie, H.: A multigrid method for eigenvalue problem.J. Comput. Phys. 274 (2014), 550-561. Zbl 1352.65631, MR 3231782, 10.1016/j.jcp.2014.06.030
Reference: [17] Xie, H.: A type of multilevel method for the Steklov eigenvalue problem.IMA J. Numer. Anal. 34 (2014), 592-608. Zbl 1312.65178, MR 3194801, 10.1093/imanum/drt009
Reference: [18] Xie, H.: A multigrid method for nonlinear eigenvalue problems.Sci. Sin., Math. 45 (2015), 1193-1204 Chinese. MR 3231782, 10.1360/n012014-00187
Reference: [19] Xie, H., Xie, M.: A multigrid method for ground state solution of Bose-Einstein condensates.Commun. Comput. Phys. 19 (2016), 648-662. MR 3480951, 10.4208/cicp.191114.130715a
Reference: [20] Xu, J.: Iterative methods by space decomposition and subspace correction.SIAM Rev. 34 (1992), 581-613. Zbl 0788.65037, MR 1193013, 10.1137/1034116
Reference: [21] Xu, J.: A novel two-grid method for semilinear elliptic equations.SIAM J. Sci. Comput. 15 (1994), 231-237. Zbl 0795.65077, MR 1257166, 10.1137/0915016
Reference: [22] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs.SIAM J. Numer. Anal. 33 (1996), 1759-1777. Zbl 0860.65119, MR 1411848, 10.1137/S0036142992232949
.

Files

Files Size Format View
AplMat_62-2017-3_2.pdf 483.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo