Previous |  Up |  Next

Article

Title: A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems (English)
Author: Zeng, Yuping
Author: Wang, Feng
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 3
Year: 2017
Pages: 243-267
Summary lang: English
.
Category: math
.
Summary: We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings. (English)
Keyword: discontinuous Galerkin method
Keyword: Steklov eigenvalue problem
Keyword: a posteriori error estimate
MSC: 35J25
MSC: 65N15
MSC: 65N25
MSC: 65N30
idZBL: Zbl 06738492
idMR: MR3661039
DOI: 10.21136/AM.2017.0115-16
.
Date available: 2017-06-01T14:36:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146780
.
Reference: [1] Ahn, H. J.: Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations.Q. Appl. Math. 39 (1981), 109-117. Zbl 0458.70018, MR 0613954, 10.1090/qam/613954
Reference: [2] Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation.SIAM J. Numer. Anal. 45 (2007), 1777-1798. Zbl 1151.65083, MR 2338409, 10.1137/060665993
Reference: [3] Ainsworth, M., Rankin, R.: Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes.SIAM J. Numer. Anal. 47 (2010), 4112-4141. Zbl 1208.65155, MR 2585181, 10.1137/080725945
Reference: [4] Alonso, A., Russo, A. D.: Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods.J. Comput. Appl. Math. 223 (2009), 177-197. Zbl 1156.65094, MR 2463110, 10.1016/j.cam.2008.01.008
Reference: [5] Andreev, A. B., Todorov, T. D.: Isoparametric finite-element approximation of a Steklov eigenvalue problem.IMA J. Numer. Anal. 24 (2004), 309-322. Zbl 1069.65120, MR 2046179, 10.1093/imanum/24.2.309
Reference: [6] Antonietti, P. F., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem.Comput. Methods Appl. Mech. Eng. 195 (2006), 3483-3503. Zbl 1168.65410, MR 2220929, 10.1016/j.cma.2005.06.023
Reference: [7] Armentano, M. G.: The effect of reduced integration in the Steklov eigenvalue problem.M2AN, Math. Model. Numer. Anal. 38 (2004), 27-36. Zbl 1077.65115, MR 2073929, 10.1051/m2an:2004002
Reference: [8] Armentano, M. G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem.Appl. Numer. Math. 58 (2008), 593-601. Zbl 1140.65078, MR 2407734, 10.1016/j.apnum.2007.01.011
Reference: [9] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [10] Babuška, I., Osborn, J.: Eigenvalue problems.Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) (P. G. Ciarlet et al., eds.) North-Holland, Amsterdam (1991), 641-787. Zbl 0875.65087, MR 1115240, 10.1016/S1570-8659(05)80042-0
Reference: [11] Becker, R., Hansbo, P., Larson, M. G.: Energy norm a posteriori error estimation for discontinuous Galerkin methods.Comput. Methods Appl. Mech. Eng. 192 (2003), 723-733. Zbl 1042.65083, MR 1952357, 10.1016/S0045-7825(02)00593-5
Reference: [12] Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics.Pure and Applied Mathematics 4, Academic Press, New York (1953). Zbl 0053.39003, MR 0054140
Reference: [13] Bermúdez, A., Rodríguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations.Numer. Math. 87 (2000), 201-227. Zbl 0998.76046, MR 1804656, 10.1007/s002110000175
Reference: [14] Bi, H., Li, H., Yang, Y.: An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem.Appl. Numer. Math. 105 (2016), 64-81. Zbl 06576298, MR 3488074, 10.1016/j.apnum.2016.02.003
Reference: [15] Bonito, A., Nochetto, R. H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method.SIAM J. Numer. Anal. 48 (2010), 734-771. Zbl 1254.65120, MR 2670003, 10.1137/08072838X
Reference: [16] Braess, D., Fraunholz, T., Hoppe, R. H. W.: An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method.SIAM J. Numer. Anal. 52 (2014), 2121-2136. Zbl 1302.65239, MR 3249368, 10.1137/130916540
Reference: [17] Bramble, J. H., Osborn, J. E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Proc. Sympos. Univ. Maryland, Baltimore, 1972, Academic Press, New York (1972), 387-408. Zbl 0264.35055, MR 0431740, 10.1016/b978-0-12-068650-6.50019-8
Reference: [18] Brenner, S. C.: Poincaré-Friedrichs inequalities for piecewise $H^1$ functions.SIAM J. Numer. Anal. 41 (2003), 306-324. Zbl 1045.65100, MR 1974504, 10.1137/S0036142902401311
Reference: [19] Chen, L., Zhang, C.: AFEM@matlab: a Matlab package of adaptive finite element methods.Technical report, University of Maryland at College Park (2006).
Reference: [20] Clément, P.: Approximation by finite element functions using local regularization.Rev. Franc. Automat. Inform. Rech. Operat. {\it 9}, Analyse numer., No. R-2 (1975), 77-84. Zbl 0368.65008, MR 0400739, 10.1051/m2an/197509r200771
Reference: [21] Conca, C., Planchard, J., Vanninathan, M.: Fluids and Periodic Structures.Research in Applied Mathematics, Wiley, Chichester; Masson, Paris (1995). Zbl 0910.76002, MR 1652238
Reference: [22] Dolejší, V., Šebestová, I., Vohralík, M.: Algebraic and discretization error estimation by equilibrated fluxes for discontinuous Galerkin methods on nonmatching grids.J. Sci. Comput. 64 (2015), 1-34. Zbl 1326.65147, MR 3353932, 10.1007/s10915-014-9921-2
Reference: [23] Dörfler, W.: A convergent adaptive algorithm for Poisson's equation.SIAM J. Numer. Anal. 33 (1996), 1106-1124. Zbl 0854.65090, MR 1393904, 10.1137/0733054
Reference: [24] Ern, A., Proft, J.: A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations.Appl. Math. Lett. 18 (2005), 833-841. Zbl 1084.65092, MR 2145454, 10.1016/j.aml.2004.05.019
Reference: [25] Garau, E. M., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems.IMA J. Numer. Anal. 31 (2011), 914-946. Zbl 1225.65107, MR 2832785, 10.1093/imanum/drp055
Reference: [26] Giani, S., Hall, E. J. C.: An a posteriori error estimator for $hp$-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems.Math. Models Methods Appl. Sci. 22 (2012), 1250030, 35 pages. Zbl 1257.65062, MR 2974168, 10.1142/S0218202512500303
Reference: [27] Han, X., Li, Y., Xie, H.: A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods.Numer. Math. Theory Methods Appl. 8 (2015), 383-405. Zbl 1349.65603, MR 3395398, 10.4208/nmtma.2015.m1334
Reference: [28] Hinton, D. B., Shaw, J. K.: Differential operators with spectral parameter incompletely in the boundary conditions.Funkc. Ekvacioj, Ser. Int. 33 (1990), 363-385. Zbl 0715.34133, MR 1086767
Reference: [29] Hoppe, R. H. W., Kanschat, G., Warburton, T.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method.SIAM J. Numer. Anal. 47 (2008), 534-550. Zbl 1189.65274, MR 2475951, 10.1137/070704599
Reference: [30] Houston, P., Perugia, I., Schötzau, D.: An a posteriori error indicator for discontinuous Galerkin discretizations of $H$(curl)-elliptic partial differential equations.IMA J. Numer. Anal. 27 (2007), 122-150. Zbl 1148.65088, MR 2289274, 10.1093/imanum/drl012
Reference: [31] Houston, P., Schötzau, D., Wihler, T. P.: Energy norm a posteriori error estimation of $hp$-adaptive discontinuous Galerkin methods for elliptic problems.Math. Models Methods Appl. Sci. 17 (2007), 33-62. Zbl 1116.65115, MR 2290408, 10.1142/S0218202507001826
Reference: [32] Karakashian, O. A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems.SIAM J. Numer. Anal. 41 (2003), 2374-2399. Zbl 1058.65120, MR 2034620, 10.1137/S0036142902405217
Reference: [33] Karakashian, O. A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems.SIAM J. Numer. Anal. 45 (2007), 641-665. Zbl 1140.65083, MR 2300291, 10.1137/05063979X
Reference: [34] Li, Q., Lin, Q., Xie, H.: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations.Appl. Math., Praha 58 (2013), 129-151. Zbl 1274.65296, MR 3034819, 10.1007/s10492-013-0007-5
Reference: [35] Li, Q., Yang, Y.: A two-grid discretization scheme for the Steklov eigenvalue problem.J. Appl. Math. Comput. 36 (2011), 129-139. Zbl 1220.65160, MR 2794136, 10.1007/s12190-010-0392-9
Reference: [36] Lin, Q., Xie, H.: A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems.Proceedings of the International Conference Applications of Mathematics, Praha (J. Brandts et al., eds.) Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2012), 134-143. Zbl 1313.65298, MR 3204407
Reference: [37] Perugia, I., Schötzau, D.: The $hp$-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations.Math. Comput. 72 (2003), 1179-1214. Zbl 1084.78007, MR 1972732, 10.1090/S0025-5718-02-01471-0
Reference: [38] Rivière, B., Wheeler, M. F.: A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Log number: R74.Comput. Math. Appl. 46 (2003), 141-163. Zbl 1059.65098, MR 2015276, 10.1016/S0898-1221(03)90086-1
Reference: [39] Romkes, A., Prudhomme, S., Oden, J. T.: A posteriori error estimation for a new stabilized discontinuous Galerkin method.Appl. Math. Lett. 16 (2003), 447-452. Zbl 1046.65089, MR 1983711, 10.1016/S0893-9659(03)00018-1
Reference: [40] Russo, A. D., Alonso, A. E.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems.Comput. Math. Appl. 62 (2011), 4100-4117. Zbl 1236.65142, MR 2859966, 10.1016/j.camwa.2011.09.061
Reference: [41] Schneider, R., Xu, Y., Zhou, A.: An analysis of discontinuous Galerkin methods for elliptic problems.Adv. Comput. Math. 25 (2006), 259-286. Zbl 1099.65116, MR 2231704, 10.1007/s10444-004-7619-y
Reference: [42] Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions.Math. Comput. 54 (1990), 483-493. Zbl 0696.65007, MR 1011446, 10.2307/2008497
Reference: [43] Sun, S., Wheeler, M. F.: $L^2(H^1)$ norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems.J. Sci. Comput. 22 (2005), 501-530. Zbl 1066.76037, MR 2142207, 10.1007/s10915-004-4148-2
Reference: [44] Tomar, S. K., Repin, S. I.: Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems.J. Comput. Appl. Math. 226 (2009), 358-369. Zbl 1163.65077, MR 2502931, 10.1016/j.cam.2008.08.015
Reference: [45] Verfürth, R.: A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Techniques.Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley, Chichester (1996).
Reference: [46] Xie, H.: A type of multilevel method for the Steklov eigenvalue problem.IMA J. Numer. Anal. 34 (2014), 592-608. Zbl 1312.65178, MR 3194801, 10.1093/imanum/drt009
Reference: [47] Yang, J., Chen, Y.: A unified a posteriori error analysis for discontinuous Galerkin approximations of reactive transport equations.J. Comput. Math. 24 (2006), 425-434. Zbl 1142.76034, MR 2229721
Reference: [48] Yang, Y., Li, Q., Li, S.: Nonconforming finite element approximations of the Steklov eigenvalue problem.Appl. Numer. Math. 59 (2009), 2388-2401. Zbl 1190.65168, MR 2553141, 10.1016/j.apnum.2009.04.005
Reference: [49] Zeng, Y., Chen, J., Wang, F.: A posteriori error estimates of a weakly over-penalized symmetric interior penalty method for elliptic eigenvalue problems.East Asian J. Appl. Math. 5 (2015), 327-341. MR 3421807, 10.4208/eajam.060415.230915a
.

Files

Files Size Format View
AplMat_62-2017-3_3.pdf 1.070Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo