Previous |  Up |  Next

Article

Title: On Jacobi fields and a canonical connection in sub-Riemannian geometry (English)
Author: Barilari, Davide
Author: Rizzi, Luca
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 77-92
Summary lang: English
.
Category: math
.
Summary: In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties. (English)
Keyword: sub-Riemannian geometry
Keyword: curvature
Keyword: connection
Keyword: Jacobi fields
MSC: 53B15
MSC: 53B21
MSC: 53C17
idZBL: Zbl 06770053
idMR: MR3672782
DOI: 10.5817/AM2017-2-77
.
Date available: 2017-06-09T07:49:05Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146795
.
Reference: [1] Agrachev, A.A.: Some open problems.Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, pp. 1–13. Zbl 1292.49040, MR 3205092
Reference: [2] Agrachev, A.A., Barilari, D., Boscain, U.: Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes).2015, http://webusers.imj-prg.fr/~davide.barilari/notes.php.
Reference: [3] Agrachev, A.A., Barilari, D., Rizzi, L.: Curvature: a variational approach.Memoirs of the AMS (in press).
Reference: [4] Agrachev, A.A., Barilari, D., Rizzi, L.: Sub-riemannian curvature in contact geometry.J. Geom. Anal. (2016), 1–43, DOI10.1007/s12220-016-9684-0. MR 3606555, 10.1007/s12220-016-9684-0
Reference: [5] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves. I.J. Dynam. Control Systems 8 (1) (2002), 93–140. DOI: http://dx.doi.org/10.1023/A:1013904801414 Zbl 1019.53038, MR 1874705, 10.1023/A:1013904801414
Reference: [6] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves. II.J. Dynam. Control Systems 8 (2) (2002), 167–215, DOI10.1023/A:1015317426164. Zbl 1045.53051, MR 1896170, 10.1023/A:1015317426164
Reference: [7] Barilari, D., Rizzi, L.: Comparison theorems for conjugate points in sub-Riemannian geometry.ESAIM Control Optim. Calc. Var. 22 (2) (2016), 439–472. Zbl 1344.53023, MR 3491778, 10.1051/cocv/2015013
Reference: [8] Jean, F.: Control of nonholonomic systems: from sub-Riemannian geometry to motion planning.SpringerBriefs in Mathematics, Springer, Cham, 2014. Zbl 1309.93002, MR 3308372
Reference: [9] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. I.Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996, Reprint of the 1963 original, A Wiley-Interscience Publication. MR 1393940
Reference: [10] Li, C., Zelenko, I.: Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries.J. Geom. Phys. 61 (4) (2011), 781–807. Zbl 1216.53039, MR 2765404, 10.1016/j.geomphys.2010.12.009
Reference: [11] Montgomery, R.: Abnormal minimizers.SIAM J. Control Optim. 32 (6) (1994), 1605–1620. Zbl 0816.49019, MR 1297101, 10.1137/S0363012993244945
Reference: [12] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications.Mathematical Surveys and Monographs ed., vol. 91, AMS, Providence, RI, 2002. Zbl 1044.53022, MR 1867362
Reference: [13] Rifford, L.: Sub-Riemannian geometry and optimal transport.SpringerBriefs in Mathematics, Springer, Cham, 2014. MR 3308395, 10.1007/978-3-319-04804-8
Reference: [14] Rizzi, L., Silveira, P.: Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds.ArXiv e-prints, Sept. 2015, J. Inst. Math. Jussieu (in press).
Reference: [15] Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram.Differential Geom. Appl. 27 (6) (2009), 723–742. Zbl 1177.53020, MR 2552681, 10.1016/j.difgeo.2009.07.002
.

Files

Files Size Format View
ArchMathRetro_053-2017-2_2.pdf 618.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo