Previous |  Up |  Next

Article

Title: Characterizations of $z$-Lindelöf spaces (English)
Author: Al-Omari, Ahmad
Author: Noiri, Takashi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 93-99
Summary lang: English
.
Category: math
.
Summary: A topological space $(X, \tau )$ is said to be $z$-Lindelöf  [1] if every cover of $X$ by cozero sets of $(X,\tau )$ admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of $z$-Lindelöf spaces. (English)
Keyword: cozero set
Keyword: $\omega $-open set
Keyword: Lindelöf
Keyword: $z$-Lindelöf
MSC: 54C05
MSC: 54C08
MSC: 54C10
idZBL: Zbl 06770054
idMR: MR3672783
DOI: 10.5817/AM2017-2-93
.
Date available: 2017-06-09T07:50:08Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146796
.
Reference: [1] Al-Ani, A.T.: $z$-compact spaces.Journal of University of Anbar for Pure Science 3 (1) (2009), 118–121.
Reference: [2] Al-Omari, A.: On ideal topological spaces via cozero sets.Questions Answers Gen. Topology 34 (2) (2016), 83–91. Zbl 1365.54002, MR 3587343
Reference: [3] Al-Omari, A.: Some operators in ideal topological spaces via cozero sets.Acta Univ. Apulensis 36 (4) (2016), 1–12. MR 3596204
Reference: [4] Al-Omari, A., Noiri, T.: On quasi compact spaces and some functions.accepted in Bol. Soc. Paran. Mat. 36 (4) (2018), 121–130. 10.5269/bspm.v36i4.31125
Reference: [5] Bayhan, S., Kanibir, A., McCluskey, A., Reilly, I.L.: On almost $z$-supercontinuity.Filomat 27 (6) (2013), 965–969. Zbl 1324.54021, MR 3244240, 10.2298/FIL1306965B
Reference: [6] Gillman, L., Jerison, M.: Rings of Continuous Functions.Van Nostrand Co., Inc., Princeton, N. J., 1960. Zbl 0093.30001, MR 0116199
Reference: [7] Hdeib, H.Z.: $\omega $-closed mappings.Rev. Colombiana Mat. 16 (1–2) (1982), 65–78. Zbl 0574.54008, MR 0677814
Reference: [8] Kohli, J.K., Singh, D., Kumar, R.: Generalizations of $Z$-supercontinuous functions and $D_{\delta }$-supercontinuous functions.Appl. Gen. Topology 9 (2) (2008), 239–251. Zbl 1181.54020, MR 2560172, 10.4995/agt.2008.1804
Reference: [9] Singal, M.K., Niemse, S.B.: $z$-continuous mappings.Math. Student 66 (1997), 193–210. MR 1626266
.

Files

Files Size Format View
ArchMathRetro_053-2017-2_3.pdf 472.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo