Title:
|
On the existence of non-linear frames (English) |
Author:
|
Jahan, Shah |
Author:
|
Kumar, Varinder |
Author:
|
Kaushik, S.K. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
101-109 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal{X}$ is a Banach space such that $\mathcal{X^*}$ has a SRBF, then $\mathcal{X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal{X}$ has an approximative Schauder frame, then $\mathcal{X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved. (English) |
Keyword:
|
Banach frames |
Keyword:
|
retro Banach frames |
Keyword:
|
approximative Schauder frames |
MSC:
|
42C15 |
MSC:
|
46B15 |
idZBL:
|
Zbl 06770055 |
idMR:
|
MR3672784 |
DOI:
|
10.5817/AM2017-2-101 |
. |
Date available:
|
2017-06-09T07:51:19Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146797 |
. |
Reference:
|
[1] Casazza, P.G.: The art of frame theory.Taiwanese J. Math. 4 (2000), 129–201. Zbl 0966.42022, MR 1757401, 10.11650/twjm/1500407227 |
Reference:
|
[2] Casazza, P.G., Dilworth, S.J., Odell, E., Th.Schlumprecht, , Zsak, A.: Cofficient quantization for frames in Banach spaces.J. Math. Anal. Appl. 348 (2008), 66–86. MR 2449328, 10.1016/j.jmaa.2008.06.055 |
Reference:
|
[3] Casazza, P.G., Han, D., Larson, D.: Frames for Banach spaces.Contemp. Math. 247 (1999), 149–181. Zbl 0947.46010, MR 1738089, 10.1090/conm/247/03801 |
Reference:
|
[4] Christensen, O.: Frames and bases (An introductory course).Birkhäuser, Boston, 2008. Zbl 1152.42001, MR 2428338 |
Reference:
|
[5] Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series.Trans. Amer. Math. Soc. 72 (1952), 341–366. Zbl 0049.32401, MR 0047179, 10.1090/S0002-9947-1952-0047179-6 |
Reference:
|
[6] Feichtinger, H.G., Grochenig, K.H.: A unified approach to atomic decompositions via integrable group representations.Lecture Notes in Math., vol. 1302, Springer, 1988, pp. 52–73. Zbl 0658.22007, MR 0942257 |
Reference:
|
[7] Grochenig, K.H.: Describing functions: Atomic decompositions versus frames.Monatsh. Math. 112 (1991), 1–41. Zbl 0736.42022, MR 1122103, 10.1007/BF01321715 |
Reference:
|
[8] Han, D., Larson, D.R.: Frames, bases and group representations.Mem. Amer. Math. Soc. 147 (2000), 1–91. Zbl 0971.42023, MR 1686653 |
Reference:
|
[9] Jain, P.K., Kaushik, S.K., Vashisht, L.K.: Banach frames for conjugate Banach spaces.Z. Anal. Anwendungen 23 (2004), 713–720. Zbl 1059.42024, MR 2110399, 10.4171/ZAA/1217 |
Reference:
|
[10] Kaushik, S.K., Sharma, S.K.: On approximative atomic decompositions in Banach spaces.Communications in Mathematics and Applications 3 (3) (2012), 293–301. |
Reference:
|
[11] Kaushik, S.K., Sharma, S.K.: Generalized Schauder frames.Arch. Math. (Brno) 50 (2014), 39–49. Zbl 1324.42048, MR 3194767, 10.5817/AM2014-1-39 |
Reference:
|
[12] Kaushik, S.K., Sharma, S.K., Poumai, K.T.: On Schauder frames in conjugate Banach spaces.Journal of Mathematics 2013 (2013), 4 pages, Article ID 318659. Zbl 1277.46009, MR 3096803 |
Reference:
|
[13] Poumai, K.T., Kaushik, S.K.: Retro Banach frames, almost exact retro Banach frames in Banach spaces.Bulletin Math. Anal. Appl. 7 (1) (2015), 38–48. MR 3340290 |
Reference:
|
[14] Sharma, S.K.: On Bi-Banach frames in Banach spaces.Int. J. Wavelets Multiresolut Inf. Process 12 (2) (2014), 10 pages, 1450015. Zbl 1290.42061, MR 3190066, 10.1142/S0219691314500155 |
Reference:
|
[15] Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces.Springer-Verlag , New York, Heidelberg, Berlin, 1970. Zbl 0197.38601, MR 0270044 |
Reference:
|
[16] Singer, I.: Bases in Banach spaces II.Springer-Verlag, New York, Heidelberg, Berlin, 1981. Zbl 0467.46020 |
Reference:
|
[17] Terekhin, P.A.: Frames in Banach spaces.Funct. Anal. Appl. 44 (3) (2010), 199–208. Zbl 1271.42043, MR 2760513, 10.1007/s10688-010-0024-z |
. |