Previous |  Up |  Next

Article

Title: On the existence of non-linear frames (English)
Author: Jahan, Shah
Author: Kumar, Varinder
Author: Kaushik, S.K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 101-109
Summary lang: English
.
Category: math
.
Summary: A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal{X}$ is a Banach space such that $\mathcal{X^*}$ has a SRBF, then $\mathcal{X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal{X}$ has an approximative Schauder frame, then $\mathcal{X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved. (English)
Keyword: Banach frames
Keyword: retro Banach frames
Keyword: approximative Schauder frames
MSC: 42C15
MSC: 46B15
idZBL: Zbl 06770055
idMR: MR3672784
DOI: 10.5817/AM2017-2-101
.
Date available: 2017-06-09T07:51:19Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146797
.
Reference: [1] Casazza, P.G.: The art of frame theory.Taiwanese J. Math. 4 (2000), 129–201. Zbl 0966.42022, MR 1757401, 10.11650/twjm/1500407227
Reference: [2] Casazza, P.G., Dilworth, S.J., Odell, E., Th.Schlumprecht, , Zsak, A.: Cofficient quantization for frames in Banach spaces.J. Math. Anal. Appl. 348 (2008), 66–86. MR 2449328, 10.1016/j.jmaa.2008.06.055
Reference: [3] Casazza, P.G., Han, D., Larson, D.: Frames for Banach spaces.Contemp. Math. 247 (1999), 149–181. Zbl 0947.46010, MR 1738089, 10.1090/conm/247/03801
Reference: [4] Christensen, O.: Frames and bases (An introductory course).Birkhäuser, Boston, 2008. Zbl 1152.42001, MR 2428338
Reference: [5] Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series.Trans. Amer. Math. Soc. 72 (1952), 341–366. Zbl 0049.32401, MR 0047179, 10.1090/S0002-9947-1952-0047179-6
Reference: [6] Feichtinger, H.G., Grochenig, K.H.: A unified approach to atomic decompositions via integrable group representations.Lecture Notes in Math., vol. 1302, Springer, 1988, pp. 52–73. Zbl 0658.22007, MR 0942257
Reference: [7] Grochenig, K.H.: Describing functions: Atomic decompositions versus frames.Monatsh. Math. 112 (1991), 1–41. Zbl 0736.42022, MR 1122103, 10.1007/BF01321715
Reference: [8] Han, D., Larson, D.R.: Frames, bases and group representations.Mem. Amer. Math. Soc. 147 (2000), 1–91. Zbl 0971.42023, MR 1686653
Reference: [9] Jain, P.K., Kaushik, S.K., Vashisht, L.K.: Banach frames for conjugate Banach spaces.Z. Anal. Anwendungen 23 (2004), 713–720. Zbl 1059.42024, MR 2110399, 10.4171/ZAA/1217
Reference: [10] Kaushik, S.K., Sharma, S.K.: On approximative atomic decompositions in Banach spaces.Communications in Mathematics and Applications 3 (3) (2012), 293–301.
Reference: [11] Kaushik, S.K., Sharma, S.K.: Generalized Schauder frames.Arch. Math. (Brno) 50 (2014), 39–49. Zbl 1324.42048, MR 3194767, 10.5817/AM2014-1-39
Reference: [12] Kaushik, S.K., Sharma, S.K., Poumai, K.T.: On Schauder frames in conjugate Banach spaces.Journal of Mathematics 2013 (2013), 4 pages, Article ID 318659. Zbl 1277.46009, MR 3096803
Reference: [13] Poumai, K.T., Kaushik, S.K.: Retro Banach frames, almost exact retro Banach frames in Banach spaces.Bulletin Math. Anal. Appl. 7 (1) (2015), 38–48. MR 3340290
Reference: [14] Sharma, S.K.: On Bi-Banach frames in Banach spaces.Int. J. Wavelets Multiresolut Inf. Process 12 (2) (2014), 10 pages, 1450015. Zbl 1290.42061, MR 3190066, 10.1142/S0219691314500155
Reference: [15] Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces.Springer-Verlag , New York, Heidelberg, Berlin, 1970. Zbl 0197.38601, MR 0270044
Reference: [16] Singer, I.: Bases in Banach spaces II.Springer-Verlag, New York, Heidelberg, Berlin, 1981. Zbl 0467.46020
Reference: [17] Terekhin, P.A.: Frames in Banach spaces.Funct. Anal. Appl. 44 (3) (2010), 199–208. Zbl 1271.42043, MR 2760513, 10.1007/s10688-010-0024-z
.

Files

Files Size Format View
ArchMathRetro_053-2017-2_4.pdf 487.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo