Previous |  Up |  Next

Article

Title: Improving the performance of semiglobal output controllers for nonlinear systems (English)
Author: Benabdallah, Abdallah
Author: Hdidi, Walid
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 296-330
Summary lang: English
.
Category: math
.
Summary: For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing output feedback controllers $(\mathcal{U}_R)_{R>0}$ with increasing regions of attraction $(\Omega_R)_{R>0}$ is that, when the region of attraction $\Omega_R$ is large, the convergence of solutions of the closed-loop system to the origin becomes slow. To improve the performance of a semiglobal controller, we look for a new feedback control law that preserves the semiglobal stability of the nonlinear system under consideration and that is equal to some "fast" controller $\mathcal{U}_{R_0}$ on a neighborhood of the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new semiglobal stabilizing hybrid feedback controller that unifies a "slow" controller that has a large region of attraction with a "fast" controller having a small region of attraction. This unification is inspired from the elegant hybrid unification of a local controller with a global one given in [21]. Moreover, this unification is different from the recent result [24], since in the cited paper the objective is just the stabilization; whereas in our study, the objective is the stabilization with high performance. Finally, we illustrate our main result by means of two numerical examples. (English)
Keyword: nonlinear system
Keyword: hybrid output feedback
Keyword: semiglobal output stabilization
Keyword: local performance
MSC: 93C10
MSC: 93D15
idZBL: Zbl 06770170
idMR: MR3661354
DOI: 10.14736/kyb-2017-2-0296
.
Date available: 2017-06-25T18:01:15Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146807
.
Reference: [1] Ahmed-Ali, T., Assche, V. Van, Massieu, J., Dorleans, P.: Continuous-discrete observer for state affine systems with sampled and delayed measurements..IEEE Trans. Automat. Control 58 (2013), 4, 1085-1091. MR 3038816, 10.1109/tac.2012.2225555
Reference: [2] Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements..System Control Lett. 62 (2013), 7, 539-549. Zbl 1277.93051, MR 3068156, 10.1016/j.sysconle.2013.03.008
Reference: [3] Andrieu, V., Praly, L.: A unifying point of view on output feedback designs for global asymptotic stabilization..Automatica 45 (2009), 8, 1789-1798. Zbl 1185.93114, MR 2879499, 10.1016/j.automatica.2009.04.015
Reference: [4] Efimov, D. V.: Uniting global and local controllers under acting disturbances..Automatica 42 (2006), 489-495. Zbl 1123.93082, MR 2195253, 10.1016/j.automatica.2005.11.003
Reference: [5] Efimov, D. V., Loria, A., Panteley, E.: Robust output stabilization: improving performance via supervisory control..Int. J. Robust Nonlinear Control 21 (2011), 10, 1219-1236. Zbl 1225.93095, MR 2839847, 10.1002/rnc.1660
Reference: [6] Freeman, R., Kokotovic, P.: Robust Nonlinear Control Design: State-Space and Lyapunov Techniques..Birkhauser, Boston 1996. Zbl 1130.93005, MR 1396307, 10.1007/978-0-8176-4759-9
Reference: [7] Gauthier, J., Hammouri, H., Othman, S.: A simple observer for nonlinear systems: Application to bioreactor..IEEE Trans. Automat. Control 37 (1992), 875-880. MR 1164571, 10.1109/9.256352
Reference: [8] Goebel, R., Sanfelice, R. G., Teel, A. R.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness..Princeton University Press 2012. Zbl 1241.93002, MR 2918932
Reference: [9] Geobel, R., Teel, A. R.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications..Automatica 42 (2006), 573-587. MR 2200351, 10.1016/j.automatica.2005.12.019
Reference: [10] Isidori, A.: Nonlinear Control Systems. (Third edition).Springer Verlag, London 1995. MR 1410988, 10.1007/978-1-84628-615-5
Reference: [11] Jiang, Z. P.: Discussion on the paper "Global asymptotic output feedback stabilization of feedforward systems", by F. Mazenc and J. C. Vivalda..Europ. J. Control 8 (2002), 6, 531-534. 10.3166/ejc.8.531-534
Reference: [12] Jouan, P., Gauthier, J.: Finite singularities of nonlinear systems, output stabilization, observability and observers..J. Dynamical Control Systems 2 (1996), 2, 255-288. Zbl 0944.93026, MR 1388697, 10.1007/bf02259528
Reference: [13] Khalil, H., Esfandiari, F.: Semiglobal stabilization of a class of nonlinear systems using output feedback..IEEE Trans. Automat. Control 38 (1993), 2, 1412-1415. Zbl 0787.93079, MR 1240837, 10.1109/9.237658
Reference: [14] Krichman, M., Sontag, E., Wang, Y.: Input-output-to-state stability..SIAM J. Control Optim. 39 (2001), 1874-1928. Zbl 1005.93044, MR 1825868, 10.1137/s0363012999365352
Reference: [15] Marino, R., Tomei, P.: A class of globally output feedback stabilizable nonlinear nonminimum phase systems..IEEE Trans. Automat. Control 50 (2005), 2097-2101. MR 2186285, 10.1109/tac.2005.858652
Reference: [16] Mazenc, F., Vivalda, J. C.: Global asymptotic output feedback stabilization of feedforward systems..Europ. J. Control 8 (2002), 6, 519-530. Zbl 1293.93613, 10.3166/ejc.8.519-530
Reference: [17] Pan, Z., Ezal, K., Krener, A. J., Kokotovic, P. V.: Backstepping design with local optimality matching..IEEE Trans. Automat. Control 46 (2001), 7, 1014-1027. Zbl 1007.93025, MR 1842136, 10.1109/9.935055
Reference: [18] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate..IEEE Trans. Automat. Control 48 (2003), 12, 1103-1108. MR 1986287, 10.1109/tac.2003.812819
Reference: [19] Praly, L., Teel, A. R.: Tools for semiglobal stabilization by partial state and output feedback..SIAM J. Control Optim. 33 (1995), 5, 1443-1488. Zbl 0843.93057, MR 1348117, 10.1137/s0363012992241430
Reference: [20] Prieur, C., Goebel, R., Teel, A. R.: Hybrid feedback control and robust stabilization of nonlinear systems..IEEE Trans. Automat. Control 52 (2007), 11, 2103-2117. MR 2361804, 10.1109/tac.2007.908320
Reference: [21] Prieur, C., Teel, A. R.: Uniting local and global output feedback controllers..IEEE Trans. Automat. Control 56 (2011), 1636-1649. MR 2848274, 10.1109/tac.2010.2091436
Reference: [22] Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm..IEEE Trans. Automat. Control 47 (2002), 10, 1710-1715. MR 1929946, 10.1109/tac.2002.803542
Reference: [23] Sanfelice, R. G., Goebel, R.: Generalized solutions to hybrid dynamical systems..ESAIM: Control, Optimisation and Calculus of Variations 14 (2008), 699-724. Zbl 1147.93032, MR 2451791, 10.1051/cocv:2008008
Reference: [24] Sanfelice, R. G., Prieur, C.: Robust supervisory control for uniting two output-feedback hybrid controllers with different objectives..Automatica 49 (2013), 1958-1969. MR 3063051, 10.1016/j.automatica.2013.03.009
Reference: [25] Shen, Y., Zhang, D., Huang, Y., Liu, Y.: Global $\mathcal K$-exponential stabilization of a class of nonlinear networked control systems..Int. J. Systems Sci. 47 (2016), 15, 3545-3553. MR 3511491, 10.1080/00207721.2015.1091899
Reference: [26] Shen, Y., Zhang, D., Xia, X.: Continuous output feedback stabilization for nonlinear systems based on sampled and delayed output measurements..Int. J. Robust. Nonlinear Control 26 (2016), 14, 3075-3087. Zbl 1346.93320, MR 3537171, 10.1080/00207721.2015.1091899
Reference: [27] Sontag, E. D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. (Second edition).Springer, New York 1998. MR 1640001, 10.1007/978-1-4612-0577-7
Reference: [28] Sontag, E. D., Wang, Y.: Output-to-state stability and detectability of nonlinear systems..Systems Control Lett. 29 (1997), 5, 279-290. Zbl 0901.93062, MR 1432653, 10.1016/s0167-6911(97)90013-x
Reference: [29] Tarbouriech, S., Garcia, G., Jr., J. M. G. da Silva, Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators..Springer-Verlag, London 2011. Zbl 1279.93004, MR 3024786, 10.1007/978-0-85729-941-3
Reference: [30] Teel, A. R., Kapoor, N.: Uniting global and local controllers..In: European Control Conference, Brussels 1997.
.

Files

Files Size Format View
Kybernetika_53-2017-2_8.pdf 578.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo