Previous |  Up |  Next

Article

Title: Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems (English)
Author: Ahmed, Ahmed
Author: Ahmedatt, Taghi
Author: Hjiaj, Hassane
Author: Touzani, Abdelfattah
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 3
Year: 2017
Pages: 243-262
Summary lang: English
.
Category: math
.
Summary: We consider the following quasilinear Neumann boundary-value problem of the type $$ \begin {cases} -\displaystyle \sum _{i=1}^{N}\frac {\partial }{\partial x_{i}}a_{i}\Big (x,\frac {\partial u}{\partial x_{i}}\Big ) + b(x)|u|^{p_{0}(x)-2}u = f(x,u)+ g(x,u) &\text {in} \ \Omega , \\ \quad \dfrac {\partial u}{\partial \gamma } = 0 &\text {on} \ \partial \Omega . \end {cases} $$ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples. (English)
Keyword: Neumann problem
Keyword: quasilinear elliptic equation
Keyword: weak solution
Keyword: variational principle
Keyword: anisotropic variable exponent Sobolev space
MSC: 35D30
MSC: 35J20
MSC: 35J25
MSC: 35J62
idZBL: Zbl 06770144
idMR: MR3695465
DOI: 10.21136/MB.2017.0037-15
.
Date available: 2017-08-31T12:39:56Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146824
.
Reference: [1] Anello, G., Cordaro, G.: Existence of solutions of the Neumann problem for a class of equations involving the $p$-Laplacian via a variational principle of Ricceri.Arch. Math. 79 (2002), 274-287. Zbl 1091.35025, MR 1944952, 10.1007/s00013-002-8314-1
Reference: [2] Azroul, E., Barbara, A., Benboubker, M. B., Hjiaj, H.: Entropy solutions for nonhomogeneous anisotropic $\Delta_{\vec p(\cdot)}$ problems.Appl. Math. 41 (2014), 149-163. Zbl 1316.35107, MR 3281367, 10.4064/am41-2-3
Reference: [3] Bendahmane, M., Chrif, M., Manouni, S. El: An approximation result in generalized anisotropic Sobolev spaces and applications.Z. Anal. Anwend. 30 (2011), 341-353. Zbl 1231.35065, MR 2819499, 10.4171/ZAA/1438
Reference: [4] Boureanu, M.-M., Rădulescu, V. D.: Anisotropic Neumann problems in Sobolev spaces with variable exponent.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4471-4482. Zbl 1262.35090, MR 2927115, 10.1016/j.na.2011.09.033
Reference: [5] Nardo, R. Di, Feo, F., Guibé, O.: Uniqueness result for nonlinear anisotropic elliptic equations.Adv. Differ. Equ. 18 (2013), 433-458. Zbl 1272.35092, MR 3086461
Reference: [6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [7] Fan, X., Ji, C.: Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian.J. Math. Anal. Appl. 334 (2007), 248-260. Zbl 1157.35040, MR 2332553, 10.1016/j.jmaa.2006.12.055
Reference: [8] Guibé, O.: Uniqueness of the renormalized solution to a class of nonlinear elliptic equations.On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments (A. Alvino et al., eds.) Quaderni di Matematica 23. Caserta (2008), 255-282. Zbl 1216.35036, MR 2762168
Reference: [9] Harjulehto, P., Hästö, P.: Sobolev inequalities with variable exponent attaining the values $1$ and $n$.Publ. Mat., Barc. 52 (2008), 347-363. Zbl 1163.46022, MR 2436729, 10.5565/PUBLMAT_52208_05
Reference: [10] Kone, B., Ouaro, S., Traore, S.: Weak solutions for anisotropic nonlinear elliptic equations with variable exponents.Electron. J. Differ. Equ. (electronic only) 2009 (2009), paper No. 144, 11 pages. Zbl 1182.35092, MR 2565886
Reference: [11] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951
Reference: [12] Mihăilescu, M., Moroşanu, G.: Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions.Appl. Anal. 89 (2010), 257-271. Zbl 1187.35074, MR 2598814, 10.1080/00036810802713826
Reference: [13] Ricceri, B.: A general variational principle and some of its applications.J. Comput. Appl. Math. 113 (2000), 401-410. Zbl 0946.49001, MR 1735837, 10.1016/S0377-0427(99)00269-1
Reference: [14] užička, M. R\accent23: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029
Reference: [15] Zhao, L., Zhao, P., Xie, X.: Existence and multiplicity of solutions for divergence type elliptic equations.Electron. J. Differ. Equ. (electronic only) 2011 (2011), paper No. 43, 9 pages. Zbl 1213.35227, MR 2788662
.

Files

Files Size Format View
MathBohem_142-2017-3_2.pdf 358.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo