Previous |  Up |  Next

Article

Title: Duality for Hilbert algebras with supremum: An application (English)
Author: Gaitán, Hernando
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 3
Year: 2017
Pages: 263-276
Summary lang: English
.
Category: math
.
Summary: We modify slightly the definition of $H$-partial functions given by Celani and Montangie (2012); these partial functions are the morphisms in the category of $H^\vee $-space and this category is the dual category of the category with objects the Hilbert algebras with supremum and morphisms, the algebraic homomorphisms. As an application we show that finite pure Hilbert algebras with supremum are determined by the monoid of their endomorphisms. (English)
Keyword: Hilbert algebra
Keyword: duality
Keyword: monoid of endomorphisms
Keyword: BCK-algebra
MSC: 03G25
MSC: 06A12
idZBL: Zbl 06770145
idMR: MR3695466
DOI: 10.21136/MB.2017.0056-15
.
Date available: 2017-08-31T12:40:23Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146825
.
Reference: [1] Berman, J., Blok, W. J.: Algebras defined from ordered sets and the varieties they generate.Order 23 (2006), 65-88. Zbl 1096.08002, MR 2258461, 10.1007/s11083-006-9032-2
Reference: [2] Celani, S. A.: A note on homomorphisms of Hilbert algebras.Int. J. Math. Math. Sci. 29 (2002), 55-61. Zbl 0993.03089, MR 1892332, 10.1155/S0161171202011134
Reference: [3] Celani, S. A., Cabrer, L. M.: Duality for finite Hilbert algebras.Discrete Math. 305 (2005), 74-99. Zbl 1084.03050, MR 2186683, 10.1016/j.disc.2005.09.002
Reference: [4] Celani, S. A., Cabrer, L. M., Montangie, D.: Representation and duality for Hilbert algebras.Cent. Eur. J. Math. 7 (2009), 463-478. Zbl 1184.03064, MR 2534466, 10.2478/s11533-009-0032-5
Reference: [5] Celani, S. A., Montangie, D.: Hilbert algebras with supremum.Algebra Univers. 67 (2012), 237-255. Zbl 1254.03117, MR 2910125, 10.1007/s00012-012-0178-z
Reference: [6] Diego, A.: Sur les algèbres de Hilbert.Collection de logique mathématique. Ser. A, vol. 21. Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966). Zbl 0144.00105, MR 0199086
Reference: [7] Gaitán, H.: Congruences and closure endomorphisms of Hilbert algebras.Commun. Algebra 43 (2015), 1135-1145. Zbl 1320.03090, MR 3298124, 10.1080/00927872.2013.865039
Reference: [8] Idziak, P. M.: Lattice operations in BCK-algebras.Math. Jap. 29 (1984), 839-846. Zbl 0555.03030, MR 0803438
Reference: [9] Iseki, K., Tanaka, S.: An introduction to the theory of BCK-algebras.Math. Jap. 23 (1978), 1-26. Zbl 0385.03051, MR 0500283
Reference: [10] Kondo, M.: Hilbert algebras are dual isomorphic to positive implicative BCK-algebras.Math. Jap. 49 (1999), 265-268. Zbl 0930.06017, MR 1687626
.

Files

Files Size Format View
MathBohem_142-2017-3_3.pdf 310.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo