Previous |  Up |  Next

Article

Title: When spectra of lattices of $z$-ideals are Stone-Čech compactifications (English)
Author: Dube, Themba
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 3
Year: 2017
Pages: 323-336
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a completely regular Hausdorff space and, as usual, let $C(X)$ denote the ring of real-valued continuous functions on $X$. The lattice of $z$-ideals of $C(X)$ has been shown by Martínez and Zenk (2005) to be a frame. We show that the spectrum of this lattice is (homeomorphic to) $\beta X$ precisely when $X$ is a $P$-space. This we actually show to be true not only in spaces, but in locales as well. Recall that an ideal of a commutative ring is called a $d$-ideal if whenever two elements have the same annihilator and one of the elements belongs to the ideal, then so does the other. We characterize when the spectrum of the lattice of $d$-ideals of $C(X)$ is the Stone-Čech compactification of the largest dense sublocale of the locale determined by $X$. It is precisely when the closure of every open set of $X$ is the closure of some cozero-set of $X$. (English)
Keyword: completely regular frame
Keyword: coherent frame
Keyword: $z$-ideal
Keyword: $d$-ideal
Keyword: Stone-Čech compactification
Keyword: booleanization
MSC: 06D22
MSC: 13A15
MSC: 18A40
MSC: 54D35
MSC: 54E17
idZBL: Zbl 06770149
idMR: MR3695470
DOI: 10.21136/MB.2017.0009-16
.
Date available: 2017-08-31T12:42:34Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146829
.
Reference: [1] Ball, R. N., Walters-Wayland, J.: $C$- and $C^*$-quotients in pointfree topology.Diss. Math. (Rozprawy Matematyczne) 412 (2002), 1-62. Zbl 1012.54025, MR 1952051, 10.4064/dm412-0-1
Reference: [2] Banaschewski, B.: Pointfree topology and the spectra of $f$-rings.Ordered algebraic structures. Proc. Curaçao Conf., 1995 C. W. Holland et al. Kluwer Academic Publishers, Dordrecht (1997), 123-148. Zbl 0870.06017, MR 1445110, 10.1007/978-94-011-5640-0_5
Reference: [3] Banaschewski, B.: The Real Numbers in Pointfree Topology.Texts in Mathematics. Series B, vol. 12. Departamento de Matemática, Universidade de Coimbra, Coimbra (1997). Zbl 0891.54009, MR 1621835
Reference: [4] Dube, T.: Concerning $P$-frames, essential $P$-frames, and strongly zero-dimensional frames.Algebra Univers. 61 (2009), 115-138. Zbl 1190.06007, MR 2551788, 10.1007/s00012-009-0006-2
Reference: [5] Dube, T.: Notes on pointfree disconnectivity with a ring-theoretic slant.Appl. Categ. Struct. 18 (2010), 55-72. Zbl 1188.06005, MR 2586718, 10.1007/s10485-008-9162-3
Reference: [6] Dube, T.: On the ideal of functions with compact support in pointfree function rings.Acta Math. Hung. 129 (2010), 205-226. Zbl 1299.06021, MR 2737723, 10.1007/s10474-010-0024-8
Reference: [7] Dube, T., Ighedo, O.: Comments regarding $d$-ideals of certain $f$-rings.J. Algebra Appl. 12 (2013), Article ID 1350008, 16 pages. Zbl 1284.06046, MR 3063447, 10.1142/S0219498813500084
Reference: [8] Dube, T., Ighedo, O.: On $z$-ideals of pointfree function rings.Bull. Iran. Math. Soc. 40 (2014), 657-675. Zbl 1309.13004, MR 3224080
Reference: [9] Dube, T., Ighedo, O.: Two functors induced by certain ideals of function rings.Appl. Categ. Struct. 22 (2014), 663-681. Zbl 1306.06007, MR 3227611, 10.1007/s10485-013-9320-0
Reference: [10] Dube, T., Ighedo, O.: On lattices of $z$-ideals of function rings.Accepted in Math. Slovaca.
Reference: [11] Gruenhage, G.: Products of cozero complemented spaces.Houston J. Math. 32 (2006), 757-773. Zbl 1109.54007, MR 2247908
Reference: [12] Hager, A. W., Martínez, J.: Fraction-dense algebras and spaces.Can. J. Math. 45 (1993), 977-996. Zbl 0795.06017, MR 1239910, 10.4153/CJM-1993-054-6
Reference: [13] Hager, A. W., Martínez, J.: Patch-generated frames and projectable hulls.Appl. Categ. Struct. 15 (2007), 49-80. Zbl 1122.06007, MR 2306538, 10.1007/s10485-007-9062-y
Reference: [14] Johnstone, P. T.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). Zbl 0499.54001, MR 0698074
Reference: [15] Martínez, J., Zenk, E. R.: When an algebraic frame is regular.Algebra Univers. 50 (2003), 231-257. Zbl 1092.06011, MR 2037528, 10.1007/s00012-003-1841-1
Reference: [16] Martínez, J., Zenk, E. R.: Dimension in algebraic frames II: Applications to frames of ideals in $C(X)$.Commentat. Math. Univ. Carol. 46 (2005), 607-636. Zbl 1121.06009, MR 2259494
Reference: [17] Picado, J., Pultr, A.: Frames and Locales. Topology without Points.Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2012). Zbl 1231.06018, MR 2868166, 10.1007/978-3-0348-0154-6
Reference: [18] Plewe, T.: Localic triquotient maps are effective descent maps.Math. Proc. Camb. Philos. Soc. 122 (1997), 17-43. Zbl 0878.54005, MR 1443584, 10.1017/S0305004196001648
.

Files

Files Size Format View
MathBohem_142-2017-3_7.pdf 326.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo