Previous |  Up |  Next

Article

Title: Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces (English)
Author: Seba, Djamila
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 3
Year: 2017
Pages: 309-321
Summary lang: English
.
Category: math
.
Summary: We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness. (English)
Keyword: differential inclusion
Keyword: Caputo fractional derivative
Keyword: nonlocal boundary conditions
Keyword: Banach space
Keyword: existence
Keyword: fixed point
Keyword: measure of noncompactness
MSC: 26A33
MSC: 34A08
MSC: 34A60
MSC: 34B10
MSC: 34B15
idZBL: Zbl 06770148
idMR: MR3695469
DOI: 10.21136/MB.2017.0041-16
.
Date available: 2017-08-31T12:42:04Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146828
.
Reference: [1] Agarwal, R. P., Ahmad, B.: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions.Comput. Math. Appl. 62 (2011), 1200-1214. Zbl 1228.34009, MR 2824708, 10.1016/j.camwa.2011.03.001
Reference: [2] Agarwal, R. P., Benchohra, M., Seba, D.: On the application of measure of noncompactness to the existence of solutions for fractional differential equations.Result. Math. 55 (2009), 221-230. Zbl 1196.2600, MR 2571191, 10.1007/s00025-009-0434-5
Reference: [3] Ahmad, B., Alsaedi, A.: Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions.Bound. Value Probl. (electronic only) (2012), Article ID 124, 10 pages. Zbl 1281.34004, MR 3017351, 10.1186/1687-2770-2012-124
Reference: [4] Ahmad, B., Nieto, J. J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 3291-3298. Zbl 1158.34049, MR 2450538, 10.1016/j.na.2007.09.018
Reference: [5] Akhmerov, R. R., Kamenskiĭ, M. I., Potapov, A. S., Rodkina, A. E., Sadovskiĭ, B. N.: Measures of Noncompactness and Condensing Operators.Operator Theory: Advances and Applications 55. Birkhäuser, Basel (1992). Zbl 0748.47045, MR 1153247, 10.1007/978-3-0348-5727-7
Reference: [6] Alsaedi, A., Ntouyas, S. K., Ahmad, B.: Existence results for Langevin fractional differential inclusions involving two fractional orders with four-point multiterm fractional integral boundary conditions.Abstr. Appl. Anal. 2013 (2013), Article ID 869837, 17 pages. Zbl 1276.26008, MR 3049420, 10.1155/2013/869837
Reference: [7] Alsulami, H. H.: Application of fixed point theorems for multivalued maps to anti-periodic problems of fractional differential inclusions.Filomat 28 (2014), 91-98. MR 3359985, 10.2298/FIL1401091A
Reference: [8] Balachandran, K., Park, J. Y., Trujillo, J. J.: Controllability of nonlinear fractional dynamical systems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 1919-1926. Zbl 1277.34006, MR 2870885, 10.1016/j.na.2011.09.042
Reference: [9] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). Zbl 0441.47056, MR 0591679
Reference: [10] Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional differential equations in Banach spaces.Commun. Appl. Anal. 12 (2008), 419-427. Zbl 1182.26007, MR 2494987
Reference: [11] Benchohra, M., Henderson, J., Seba, D.: Boundary value problems for fractional differential inclusions in Banach spaces.Fract. Differ. Calc. 2 (2012), 99-108. MR 3003005, 10.7153/fdc-02-07
Reference: [12] Benchohra, M., N'Guérékata, G. M., Seba, D.: Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order.Cubo 12 (2010), 35-48. Zbl 1219.34100, MR 2779372, 10.4067/S0719-06462010000300003
Reference: [13] Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations.Appl. Math. Lett. 51 (2016), 48-54. Zbl 1329.34005, MR 3396346, 10.1016/j.aml.2015.07.002
Reference: [14] Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces.Mathematics and Its Applications 373. Kluwer Academic Publishers, Dordrecht (1996). Zbl 0866.45004, MR 1418859, 10.1007/978-1-4613-1281-9
Reference: [15] Han, J., Liu, Y., Zhao, J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations.Appl. Math. Comput. 218 (2012), 5002-5009. Zbl 1246.45006, MR 2870024, 10.1016/j.amc.2011.10.067
Reference: [16] Heinz, H.-P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions.Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351-1371. Zbl 0528.47046, MR 0726478, 10.1016/0362-546X(83)90006-8
Reference: [17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073, 10.1016/s0304-0208(06)x8001-5
Reference: [18] Lakshmikantham, V., Leela, S., Devi, J. Vasundhara: Theory of Fractional Dynamic Systems.Cambridge Scientific Publishers, Cambridge (2009). Zbl 1188.37002
Reference: [19] Lasota, A., Opial, Z.: An application of the Kakutani---Ky Fan theorem in the theory of ordinary differential equations.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786. Zbl 0151.10703, MR 0196178
Reference: [20] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlinear Anal., Theory Methods Appl. 4 (1980), 985-999. Zbl 0462.34041, MR 0586861, 10.1016/0362-546X(80)90010-3
Reference: [21] Ntouyas, S. K.: Existence results for nonlocal boundary value problems for fractional differential equations and inclusions with fractional integral boundary conditions.Discuss. Math., Differ. Incl. Control Optim. 33 (2013), 17-39. Zbl 1307.34016, MR 3136580, 10.7151/dmdico.1146
Reference: [22] Ntouyas, S. K., Tariboon, J.: Nonlocal boundary value problems for Langevin fractional differential inclusions with Riemann-Liouville fractional integral boundary conditions.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 123-141. Zbl 1326.34022, MR 3360149
Reference: [23] O'Regan, D., Precup, R.: Fixed point theorems for set-valued maps and existence principles for integral inclusions.J. Math. Anal. Appl. 245 (2000), 594-612. Zbl 0956.47026, MR 1758558, 10.1006/jmaa.2000.6789
Reference: [24] Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation.Fract. Calc. Appl. Anal. 5 (2002), 367-386; Correction: "Geometric and physical interpretation of fractional integration and fractional differentiation'', ibid. {\it 6} (2003), 109-110. Zbl 1042.26003, MR 1967839
Reference: [25] Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro Machado: Advances in Fractional Calculus---Theoretical Developments and Applications in Physics and Engineering.Springer, Dordrecht (2007). Zbl 1116.00014, MR 2432163, 10.1007/978-1-4020-6042-7
Reference: [26] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689
Reference: [27] Szufla, S.: On the application of measure of noncompactness to existence theorems.Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14. Zbl 0589.45007, MR 0847653
Reference: [28] Xu, J., Wei, Z., Dong, W.: Uniqueness of positive solutions for a class of fractional boundary value problems.Appl. Math. Lett. 25 (2012), 590-593. Zbl 1247.34011, MR 2856039, 10.1016/j.aml.2011.09.065
.

Files

Files Size Format View
MathBohem_142-2017-3_6.pdf 298.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo