Previous |  Up |  Next

Article

Title: Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition (English)
Author: Sakakibara, Koya
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 4
Year: 2017
Pages: 297-317
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to analyze mathematically the method of fundamental solutions applied to the biharmonic problem. The key idea is to use Almansi-type decomposition of biharmonic functions, which enables us to represent the biharmonic function in terms of two harmonic functions. Based on this decomposition, we prove that an approximate solution exists uniquely and that the approximation error decays exponentially with respect to the number of the singular points. We finally present results of numerical experiments, which verify the sharpness of our error estimate. (English)
Keyword: method of fundamental solutions
Keyword: biharmonic equation
Keyword: Almansi-type decomposition
MSC: 31A30
MSC: 49M27
MSC: 65N80
idZBL: Zbl 06770046
idMR: MR3686419
DOI: 10.21136/AM.2017.0018-17
.
Date available: 2017-08-31T12:43:28Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146830
.
Reference: [1] Almansi, E.: Sull'integrazione dell'equazione differentiale $\triangle^{2n}=0$.Annali di Mat. (3) 2 (1897), Italian 1-51 \99999JFM99999 30.0331.03. 10.1007/bf02419286
Reference: [2] Bock, S., Gürlebeck, K.: On a spatial generalization of the Kolosov-Muskhelishvili formulae.Math. Methods Appl. Sci. 32 (2009), 223-240. Zbl 1151.74308, MR 2478914, 10.1002/mma.1033
Reference: [3] Karageorghis, A.: The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions.Numer. Algorithms 68 (2015), 185-211. Zbl 1308.65210, MR 3296706, 10.1007/s11075-014-9900-6
Reference: [4] Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation.J. Comput. Phys. 69 (1987), 434-459. Zbl 0618.65108, MR 0888063, 10.1016/0021-9991(87)90176-8
Reference: [5] Karageorghis, A., Fairweather, G.: The Almansi method of fundamental solutions for solving biharmonic problems.Int. J. Numer. Methods Eng. 26 (1988), 1665-1682. Zbl 0639.65066, MR 1016068, 10.1002/nme.1620260714
Reference: [6] Katsurada, M.: A mathematical study of the charge simulation method by use of peripheral conformal mappings.Mem. Inst. Sci. Tech. Meiji Univ. 35 (1998), 195-212. MR 0965011
Reference: [7] Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method. I.J. Fac. Sci., Univ. Tokyo, Sect. I A 35 (1988), 507-518. Zbl 0662.65100, MR 0965011
Reference: [8] Krakowski, M., Charnes, A.: Stokes' Paradox and Biharmonic Flows.Report 37, Carnegie Institute of Technology, Department of Mathematics, Pittsburgh (1953).
Reference: [9] Langlois, W. E., Deville, M. O.: Slow Viscous Flow.Springer, Cham (2014). Zbl 1302.76003, MR 3186274, 10.1007/978-3-319-03835-3
Reference: [10] Li, Z.-C., Lee, M.-G., Chiang, J. Y., Liu, Y. P.: The Trefftz method using fundamental solutions for biharmonic equations.J. Comput. Appl. Math. 235 (2011), 4350-4367. Zbl 1222.65131, MR 2802010, 10.1016/j.cam.2011.03.024
Reference: [11] Poullikkas, A., Karageorghis, A., Georgiou, G.: Methods of fundamental solutions for harmonic and biharmonic boundary value problems.Comput. Mech. 21 (1998), 416-423. Zbl 0913.65104, MR 1628005, 10.1007/s004660050320
Reference: [12] Sakakibara, K.: Analysis of the dipole simulation method for two-dimensional Dirichlet problems in Jordan regions with analytic boundaries.BIT 56 (2016), 1369-1400. Zbl 06667568, MR 3576615, 10.1007/s10543-016-0605-1
.

Files

Files Size Format View
AplMat_62-2017-4_1.pdf 344.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo