Previous |  Up |  Next

Article

Title: On the optimality and sharpness of Laguerre's lower bound on the smallest eigenvalue of a symmetric positive definite matrix (English)
Author: Yamamoto, Yusaku
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 4
Year: 2017
Pages: 319-331
Summary lang: English
.
Category: math
.
Summary: Lower bounds on the smallest eigenvalue of a symmetric positive definite matrix $A\in \mathbb {R}^{m\times m}$ play an important role in condition number estimation and in iterative methods for singular value computation. In particular, the bounds based on ${\rm Tr}(A^{-1})$ and ${\rm Tr}(A^{-2})$ have attracted attention recently, because they can be computed in $O(m)$ operations when $A$ is tridiagonal. In this paper, we focus on these bounds and investigate their properties in detail. First, we consider the problem of finding the optimal bound that can be computed solely from ${\rm Tr}(A^{-1})$ and ${\rm Tr}(A^{-2})$ and show that the so called Laguerre's lower bound is the optimal one in terms of sharpness. Next, we study the gap between the Laguerre bound and the smallest eigenvalue. We characterize the situation in which the gap becomes largest in terms of the eigenvalue distribution of $A$ and show that the gap becomes smallest when $\{{\rm Tr}(A^{-1})\}^2/{\rm Tr}(A^{-2})$ approaches 1 or $m$. These results will be useful, for example, in designing efficient shift strategies for singular value computation algorithms. (English)
Keyword: eigenvalue bound
Keyword: symmetric positive definite matrix
Keyword: Laguerre bound
Keyword: singular value computation
Keyword: dqds algorithm
MSC: 15A18
MSC: 15A42
idZBL: Zbl 06770047
idMR: MR3686420
DOI: 10.21136/AM.2017.0022-17
.
Date available: 2017-08-31T12:43:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146832
.
Reference: [1] Aishima, K., Matsuo, T., Murota, K., Sugihara, M.: A survey on convergence theorems of the dqds algorithm for computing singular values.J. Math-for-Ind. 2 (2010), 1-11. Zbl 1210.65088, MR 2639360
Reference: [2] Alefeld, G.: On the convergence of Halley's method.Am. Math. Monthly 88 (1981), 530-536. Zbl 0486.65035, MR 0628022, 10.2307/2321760
Reference: [3] Fernando, K. V., Parlett, B. N.: Accurate singular values and differential qd algorithms.Numer. Math. 67 (1994), 191-229. Zbl 0814.65036, MR 1262781, 10.1007/s002110050024
Reference: [4] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (2013). Zbl 1268.65037, MR 3024913
Reference: [5] Householder, A. S.: The Numerical Treatment of a Single Nonlinear Equation.International Series in Pure and Applied Mathematics, McGraw-Hill Book, New York (1970). Zbl 0242.65047, MR 0388759
Reference: [6] Iwasaki, M., Nakamura, Y.: Accurate computation of singular values in terms of shifted integrable schemes.Japan J. Ind. Appl. Math. 23 (2006), 239-259. Zbl 1117.65055, MR 2281507, 10.1007/BF03167593
Reference: [7] Johnson, C. R.: A Gersgorin-type lower bound for the smallest singular value.Linear Algebra Appl. 112 (1989), 1-7. Zbl 0723.15013, MR 0976325, 10.1016/0024-3795(89)90583-1
Reference: [8] Johnson, C. R., Szulc, T.: Further lower bounds for the smallest singular value.Linear Algebra Appl. 272 (1998), 169-179. Zbl 0891.15013, MR 1489385, 10.1016/S0024-3795(97)00330-3
Reference: [9] Kimura, K., Yamashita, T., Nakamura, Y.: Conserved quantities of the discrete finite Toda equation and lower bounds of the minimal singular value of upper bidiagonal matrices.J. Phys. A, Math. Theor. 44 (2011), Article ID 285207, 12 pages. Zbl 1223.37068, MR 2812341, 10.1088/1751-8113/44/28/285207
Reference: [10] Matt, U. von: The orthogonal qd-algorithm.SIAM J. Sci. Comput. 18 (1997), 1163-1186. Zbl 0895.65014, MR 1453563, 10.1137/S1064827594274887
Reference: [11] Yamashita, T., Kimura, K., Nakamura, Y.: Subtraction-free recurrence relations for lower bounds of the minimal singular value of an upper bidiagonal matrix.J. Math-for-Ind. 4 (2012), 55-71. Zbl 1302.15012, MR 2912032
Reference: [12] Yamashita, T., Kimura, K., Takata, M., Nakamura, Y.: An application of the Kato-Temple inequality on matrix eigenvalues to the dqds algorithm for singular values.JSIAM Lett. 5 (2013), 21-24. MR 3035546, 10.14495/jsiaml.5.21
Reference: [13] Yamashita, T., Kimura, K., Yamamoto, Y.: A new subtraction-free formula for lower bounds of the minimal singular value of an upper bidiagonal matrix.Numer. Algorithms 69 (2015), 893-912. Zbl 1329.65079, MR 3374105, 10.1007/s11075-014-9931-z
Reference: [14] Wilkinson, J. H.: The Algebraic Eigenvalue Problem.Monographs on Numerical Analysis, Oxford Science Publications, Clarendon Press, Oxford (1988). Zbl 0626.65029, MR 0950175
.

Files

Files Size Format View
AplMat_62-2017-4_2.pdf 512.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo