Previous |  Up |  Next

Article

Title: Error analysis of splitting methods for semilinear evolution equations (English)
Author: Ohta, Masahito
Author: Sasaki, Takiko
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 4
Year: 2017
Pages: 405-432
Summary lang: English
.
Category: math
.
Summary: We consider a Strang-type splitting method for an abstract semilinear evolution equation $$ \partial _t u = Au+F(u). $$ Roughly speaking, the splitting method is a time-discretization approximation based on the decomposition of the operators $A$ and $F.$ Particularly, the Strang method is a popular splitting method and is known to be convergent at a second order rate for some particular ODEs and PDEs. Moreover, such estimates usually address the case of splitting the operator into two parts. In this paper, we consider the splitting method which is split into three parts and prove that our proposed method is convergent at a second order rate. (English)
Keyword: splitting method
Keyword: semilinear evolution equations
Keyword: error analysis
MSC: 34B16
MSC: 34C25
idZBL: Zbl 06770051
idMR: MR3686424
DOI: 10.21136/AM.2017.0020-17
.
Date available: 2017-08-31T12:46:13Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146836
.
Reference: [1] Besse, C., Bidégaray, B., Descombes, S.: Order estimates in the time of splitting methods for the nonlinear Schrödinger equation.SIAM J. Numer. Anal. 40 (2002), 26-40. Zbl 1026.65073, MR 1921908, 10.1137/S0036142900381497
Reference: [2] Borgna, J. P., Leo, M. De, Rial, D., Vega, C. Sánchez de la: General splitting methods for abstract semilinear evolution equations.Commun. Math. Sci. 13 (2015), 83-101. Zbl 1311.65106, MR 3238139, 10.4310/CMS.2015.v13.n1.a4
Reference: [3] Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations.Oxford Lecture Series in Mathematics and Its Applications 13, Clarendon Press, Oxford (1998). Zbl 0926.35049, MR 1691574
Reference: [4] Descombes, S., Thalhammer, M.: An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime.BIT 50 (2010), 729-749. Zbl 1205.65250, MR 2739463, 10.1007/s10543-010-0282-4
Reference: [5] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations.Springer Series in Computational Mathematics 31, Springer, Berlin (2006). Zbl 1094.65125, MR 2221614, 10.1007/3-540-30666-8
Reference: [6] Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings.BIT 40 (2000), 735-744. Zbl 0972.65061, MR 1799313, 10.1023/A:1022396519656
Reference: [7] Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations.Math. Comput. 77 (2008), 2141-2153. Zbl 1198.65186, MR 2429878, 10.1090/S0025-5718-08-02101-7
.

Files

Files Size Format View
AplMat_62-2017-4_6.pdf 399.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo