Previous |  Up |  Next

Article

Title: A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation (English)
Author: Zhou, Guanyu
Author: Kashiwabara, Takahito
Author: Oikawa, Issei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 4
Year: 2017
Pages: 377-403
Summary lang: English
.
Category: math
.
Summary: We consider the finite element method for the time-dependent Stokes problem with the slip boundary condition in a smooth domain. To avoid a variational crime of numerical computation, a penalty method is introduced, which also facilitates the numerical implementation. For the continuous problem, the convergence of the penalty method is investigated. Then we study the fully discretized finite element approximations for the penalty method with the P1/P1-stabilization or P1b/P1 element. For the discretization of the penalty term, we propose reduced and non-reduced integration schemes, and obtain an error estimate for velocity and pressure. The theoretical results are verified by numerical experiments. (English)
Keyword: penalty method
Keyword: Stokes problem
Keyword: finite element method
Keyword: error estimate
MSC: 35Q30
MSC: 65N30
idZBL: Zbl 06770050
idMR: MR3686423
DOI: 10.21136/AM.2017.0328-16
.
Date available: 2017-08-31T12:45:48Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146835
.
Reference: [1] Bänsch, E., Deckelnick, K.: Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition.M2AN, Math. Model. Numer. Anal. 33 (1999), 923-938. Zbl 0948.76035, MR 1726716, 10.1051/m2an:1999126
Reference: [2] Bänsch, E., Höhn, B.: Numerical treatment of the Navier-Stokes equations with slip boundary condition.SIAM J. Sci. Comput. 21 (2000), 2144-2162. Zbl 0970.76056, MR 1762035, 10.1137/S1064827598343991
Reference: [3] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15 Springer, New York (2002). Zbl 0804.65101, MR 1894376, 10.1007/978-0-387-75934-0
Reference: [4] Çağlar, A.: Weak imposition of boundary conditions for the Navier-Stokes equations.Appl. Math. Comput. 149 (2004), 119-145. Zbl 1100.76034, MR 2030987, 10.1016/S0096-3003(02)00960-8
Reference: [5] Dione, I., Tibirna, C., Urquiza, J.: Stokes equations with penalised slip boundary conditions.Int. J. Comput. Fluid Dyn. 27 (2013), 283-296. MR 3171814, 10.1080/10618562.2013.821114
Reference: [6] Dione, I., Urquiza, J. M.: Penalty: finite element approximation of Stokes equations with slip boundary conditions.Numer. Math. 129 (2015), 587-610. Zbl 1308.76162, MR 3311462, 10.1007/s00211-014-0646-9
Reference: [7] Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities.Int. J. Numer. Methods Eng. 79 (2009), 1309-1331. Zbl 1176.74181, MR 2566786, 10.1002/nme.2579
Reference: [8] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5 Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [9] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013
Reference: [10] Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization.SIAM J. Numer. Anal. 19 (1982), 275-311. Zbl 0487.76035, MR 0650052, 10.1137/0719018
Reference: [11] John, V.: Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations---numerical tests and aspects of the implementation.J. Comput. Appl. Math. 147 (2002), 287-300. Zbl 1021.76028, MR 1933597, 10.1016/S0377-0427(02)00437-5
Reference: [12] Kashiwabara, T., Oikawa, I., Zhou, G.: Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition.Numer. Math. 134 (2016), 705-740. Zbl 06654608, MR 3563279, 10.1007/s00211-016-0790-5
Reference: [13] Knobloch, P.: Discrete Friedrich's and Korn's inequalities in two and three dimensions.East-West J. Numer. Math. 4 (1996), 35-51. Zbl 0854.65098, MR 1393064
Reference: [14] Knobloch, P.: Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions.East-West J. Numer. Math. 7 (1999), 133-158. Zbl 0958.76043, MR 1699239
Reference: [15] Layton, W.: Weak imposition of ``no-slip'' conditions in finite element methods.Comput. Math. Appl. 38 (1999), 129-142. Zbl 0953.76050, MR 1707832, 10.1016/S0898-1221(99)00220-5
Reference: [16] Logg, A., Mardal, K.-A., Wells, G., Editors: Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Bbook.Lecture Notes in Computational Science and Engineering 84 Springer, Heidelberg (2012). Zbl 1247.65105, MR 3075806, 10.1007/978-3-642-23099-8
Reference: [17] Saito, H., Scriven, L. E.: Study of coating flow by the finite element method.J. Comput. Phys. 42 (1981), 53-76. Zbl 0466.76035, 10.1016/0021-9991(81)90232-1
Reference: [18] Shibata, Y., Shimada, R.: On a generalized resolvent estimate for the Stokes system with Robin boundary condition.J. Math. Soc. Japan 59 (2007), 469-519. Zbl 1127.35043, MR 2325694, 10.2969/jmsj/05920469
Reference: [19] Stokes, Y., Carey, G.: On generalized penalty approaches for slip, free surface and related boundary conditions in viscous flow simulation.Int. J. Numer. Meth. Heat and Fluid Flow 21 (2011), 668-702. 10.1108/09615531111148455
Reference: [20] Tabata, M.: Uniform solvability of finite element solutions in approximate domains.Japan J. Ind. Appl. Math. 18 (2001), 567-585. Zbl 0985.65142, MR 1842928, 10.1007/BF03168591
Reference: [21] Tabata, M.: Finite element approximation to infinite Prandtl number Boussinesq equations with temperature-dependent coefficients---Thermal convection problems in a spherical shell.Future Gener. Comput. Syst. 22 521-531 (2006). 10.1016/j.future.2005.04.008
Reference: [22] Tabata, M., Suzuki, A.: A stabilized finite element method for the Rayleigh-Bénard equations with infinite Prandtl number in a spherical shell.Comput. Methods Appl. Mech. Eng. 190 (2000), 387-402. Zbl 0973.76056, MR 1808485, 10.1016/S0045-7825(00)00209-7
Reference: [23] Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows.Japan J. Ind. Appl. Math. 17 (2000), 371-389. Zbl 1306.76026, MR 1794176, 10.1007/BF03167373
Reference: [24] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.AMS Chelsea Publishing, Providence (2001). Zbl 0981.35001, MR 1846644, 10.1090/chel/343
Reference: [25] Verfürth, R.: Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions.RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 461-475. Zbl 0579.76024, MR 0807327, 10.1051/m2an/1985190304611
Reference: [26] Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition.Numer. Math. 50 (1987), 697-721. Zbl 0596.76031, MR 0884296, 10.1007/BF01398380
Reference: [27] Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. II.Numer. Math. 59 (1991), 615-636. Zbl 0739.76034, MR 1124131, 10.1007/BF01385799
Reference: [28] Zhou, G., Kashiwabara, T., Oikawa, I.: Penalty method for the stationary Navier-Stokes problems under the slip boundary condition.J. Sci. Comput. 68 (2016), 339-374. Zbl 06607354, MR 3510584, 10.1007/s10915-015-0142-0
.

Files

Files Size Format View
AplMat_62-2017-4_5.pdf 438.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo