| Title: | On the critical determinants of certain star bodies (English) | 
| Author: | Nowak, Werner Georg | 
| Language: | English | 
| Journal: | Communications in Mathematics | 
| ISSN: | 1804-1388 | 
| Volume: | 25 | 
| Issue: | 1 | 
| Year: | 2017 | 
| Pages: | 5-11 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In a classic paper, W.G. Spohn established the to-date sharpest estimates from below for the simultaneous Diophantine approximation constants for three and more real numbers. As a by-result of his method which used Blichfeldt's Theorem and the calculus of variations, he derived a bound for the critical determinant of the star body $$ \lvert x_1\rvert ({\lvert x_1\rvert^3+\lvert x_2\rvert^3+\lvert x_3\rvert^3})\le 1\,.$$ In this little note, after a brief exposition of the basics of the geometry of numbers and its significance for Diophantine approximation, this latter result is improved and extended to the star body $$ \lvert x_1\rvert (\lvert x_1\rvert^3+(x_2^2+x_3^2)^{3/2})\le 1\,. $$ (English) | 
| Keyword: | Geometry of numbers | 
| Keyword: | Diophantine approximation | 
| Keyword: | approximation constants | 
| Keyword: | critical determinant | 
| MSC: | 11H16 | 
| MSC: | 11J13 | 
| idZBL: | Zbl 06888084 | 
| idMR: | MR3667072 | 
| . | 
| Date available: | 2017-09-01T12:10:14Z | 
| Last updated: | 2020-01-05 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/146840 | 
| . | 
| Reference: | [1] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications.Trans. Amer. Math. Soc., 15, 1914, 227-235,  MR 1500976, 10.1090/S0002-9947-1914-1500976-6 | 
| Reference: | [2] Cassels, J.W.S.: Simultaneous Diophantine approximation.J. London Math. Soc., 30, 1955, 119-121,  Zbl 0065.28302, MR 0066432, 10.1112/jlms/s1-30.1.119 | 
| Reference: | [3] Davenport, H.: Simultaneous Diophantine approximation.Proc. London Math. Soc., 3, 2, 1952, 406-416,  Zbl 0048.03204, MR 0054657 | 
| Reference: | [4] Davenport, H.: On a theorem of Furtwängler.J. London Math. Soc., 30, 1955, 185-195,  Zbl 0064.04501, MR 0067943 | 
| Reference: | [5] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers.1987, North Holland, Amsterdam,  Zbl 0611.10017, MR 0893813 | 
| Reference: | [6] Mack, J.M.: Simultaneous Diophantine approximation.J. Austral. Math. Soc., Ser. A, 24, 1977, 266-285,  Zbl 0377.10020, MR 0472719, 10.1017/S1446788700020292 | 
| Reference: | [7] Mullender, P.: Lattice points in non-convex regions I..Proc. Kon. Ned. Akad. Wet., 51, 1948, 874-884,  Zbl 0031.11301, MR 0027301 | 
| Reference: | [8] Mullender, P.: Simultaneous approximation.Ann. Math., 52, 1950, 417-426,  Zbl 0037.17102, MR 0037326, 10.2307/1969477 | 
| Reference: | [9] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie.1975, Bibliograph. Inst., Mannheim,  MR 0392779 | 
| Reference: | [10] Nowak, W.G.: A note on simultaneous Diophantine approximation.Manuscr. math., 36, 1981, 33-46,  Zbl 0455.10020, MR 0637853, 10.1007/BF01174811 | 
| Reference: | [11] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$.Math. Pannonica, 10, 1999, 111-122,  MR 1678107 | 
| Reference: | [12] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem.T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland,  MR 3526920 | 
| Reference: | [13] Spohn, W.G.: Midpoint regions and simultaneous Diophantine approximation.Dissertation, Ann Arbor, Michigan, University Microfilms, Inc., Order No. 62-4343, (1962).  MR 2613496 | 
| Reference: | [14] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation.Amer. J. Math., 90, 1968, 885-894,  MR 0231794, 10.2307/2373489 | 
| . |