Title:
|
On the critical determinants of certain star bodies (English) |
Author:
|
Nowak, Werner Georg |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
25 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
5-11 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In a classic paper, W.G. Spohn established the to-date sharpest estimates from below for the simultaneous Diophantine approximation constants for three and more real numbers. As a by-result of his method which used Blichfeldt's Theorem and the calculus of variations, he derived a bound for the critical determinant of the star body $$ \lvert x_1\rvert ({\lvert x_1\rvert^3+\lvert x_2\rvert^3+\lvert x_3\rvert^3})\le 1\,.$$ In this little note, after a brief exposition of the basics of the geometry of numbers and its significance for Diophantine approximation, this latter result is improved and extended to the star body $$ \lvert x_1\rvert (\lvert x_1\rvert^3+(x_2^2+x_3^2)^{3/2})\le 1\,. $$ (English) |
Keyword:
|
Geometry of numbers |
Keyword:
|
Diophantine approximation |
Keyword:
|
approximation constants |
Keyword:
|
critical determinant |
MSC:
|
11H16 |
MSC:
|
11J13 |
idZBL:
|
Zbl 06888084 |
idMR:
|
MR3667072 |
. |
Date available:
|
2017-09-01T12:10:14Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146840 |
. |
Reference:
|
[1] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications.Trans. Amer. Math. Soc., 15, 1914, 227-235, MR 1500976, 10.1090/S0002-9947-1914-1500976-6 |
Reference:
|
[2] Cassels, J.W.S.: Simultaneous Diophantine approximation.J. London Math. Soc., 30, 1955, 119-121, Zbl 0065.28302, MR 0066432, 10.1112/jlms/s1-30.1.119 |
Reference:
|
[3] Davenport, H.: Simultaneous Diophantine approximation.Proc. London Math. Soc., 3, 2, 1952, 406-416, Zbl 0048.03204, MR 0054657 |
Reference:
|
[4] Davenport, H.: On a theorem of Furtwängler.J. London Math. Soc., 30, 1955, 185-195, Zbl 0064.04501, MR 0067943 |
Reference:
|
[5] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers.1987, North Holland, Amsterdam, Zbl 0611.10017, MR 0893813 |
Reference:
|
[6] Mack, J.M.: Simultaneous Diophantine approximation.J. Austral. Math. Soc., Ser. A, 24, 1977, 266-285, Zbl 0377.10020, MR 0472719, 10.1017/S1446788700020292 |
Reference:
|
[7] Mullender, P.: Lattice points in non-convex regions I..Proc. Kon. Ned. Akad. Wet., 51, 1948, 874-884, Zbl 0031.11301, MR 0027301 |
Reference:
|
[8] Mullender, P.: Simultaneous approximation.Ann. Math., 52, 1950, 417-426, Zbl 0037.17102, MR 0037326, 10.2307/1969477 |
Reference:
|
[9] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie.1975, Bibliograph. Inst., Mannheim, MR 0392779 |
Reference:
|
[10] Nowak, W.G.: A note on simultaneous Diophantine approximation.Manuscr. math., 36, 1981, 33-46, Zbl 0455.10020, MR 0637853, 10.1007/BF01174811 |
Reference:
|
[11] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$.Math. Pannonica, 10, 1999, 111-122, MR 1678107 |
Reference:
|
[12] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem.T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, MR 3526920 |
Reference:
|
[13] Spohn, W.G.: Midpoint regions and simultaneous Diophantine approximation.Dissertation, Ann Arbor, Michigan, University Microfilms, Inc., Order No. 62-4343, (1962). MR 2613496 |
Reference:
|
[14] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation.Amer. J. Math., 90, 1968, 885-894, MR 0231794, 10.2307/2373489 |
. |