Previous |  Up |  Next

Article

Title: On the critical determinants of certain star bodies (English)
Author: Nowak, Werner Georg
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 1
Year: 2017
Pages: 5-11
Summary lang: English
.
Category: math
.
Summary: In a classic paper, W.G. Spohn established the to-date sharpest estimates from below for the simultaneous Diophantine approximation constants for three and more real numbers. As a by-result of his method which used Blichfeldt's Theorem and the calculus of variations, he derived a bound for the critical determinant of the star body $$ \lvert x_1\rvert ({\lvert x_1\rvert^3+\lvert x_2\rvert^3+\lvert x_3\rvert^3})\le 1\,.$$ In this little note, after a brief exposition of the basics of the geometry of numbers and its significance for Diophantine approximation, this latter result is improved and extended to the star body $$ \lvert x_1\rvert (\lvert x_1\rvert^3+(x_2^2+x_3^2)^{3/2})\le 1\,. $$ (English)
Keyword: Geometry of numbers
Keyword: Diophantine approximation
Keyword: approximation constants
Keyword: critical determinant
MSC: 11H16
MSC: 11J13
idZBL: Zbl 06888084
idMR: MR3667072
.
Date available: 2017-09-01T12:10:14Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146840
.
Reference: [1] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications.Trans. Amer. Math. Soc., 15, 1914, 227-235, MR 1500976, 10.1090/S0002-9947-1914-1500976-6
Reference: [2] Cassels, J.W.S.: Simultaneous Diophantine approximation.J. London Math. Soc., 30, 1955, 119-121, Zbl 0065.28302, MR 0066432, 10.1112/jlms/s1-30.1.119
Reference: [3] Davenport, H.: Simultaneous Diophantine approximation.Proc. London Math. Soc., 3, 2, 1952, 406-416, Zbl 0048.03204, MR 0054657
Reference: [4] Davenport, H.: On a theorem of Furtwängler.J. London Math. Soc., 30, 1955, 185-195, Zbl 0064.04501, MR 0067943
Reference: [5] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers.1987, North Holland, Amsterdam, Zbl 0611.10017, MR 0893813
Reference: [6] Mack, J.M.: Simultaneous Diophantine approximation.J. Austral. Math. Soc., Ser. A, 24, 1977, 266-285, Zbl 0377.10020, MR 0472719, 10.1017/S1446788700020292
Reference: [7] Mullender, P.: Lattice points in non-convex regions I..Proc. Kon. Ned. Akad. Wet., 51, 1948, 874-884, Zbl 0031.11301, MR 0027301
Reference: [8] Mullender, P.: Simultaneous approximation.Ann. Math., 52, 1950, 417-426, Zbl 0037.17102, MR 0037326, 10.2307/1969477
Reference: [9] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie.1975, Bibliograph. Inst., Mannheim, MR 0392779
Reference: [10] Nowak, W.G.: A note on simultaneous Diophantine approximation.Manuscr. math., 36, 1981, 33-46, Zbl 0455.10020, MR 0637853, 10.1007/BF01174811
Reference: [11] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$.Math. Pannonica, 10, 1999, 111-122, MR 1678107
Reference: [12] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem.T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, MR 3526920
Reference: [13] Spohn, W.G.: Midpoint regions and simultaneous Diophantine approximation.Dissertation, Ann Arbor, Michigan, University Microfilms, Inc., Order No. 62-4343, (1962). MR 2613496
Reference: [14] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation.Amer. J. Math., 90, 1968, 885-894, MR 0231794, 10.2307/2373489
.

Files

Files Size Format View
ActaOstrav_25-2017-1_2.pdf 406.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo