Previous |  Up |  Next

Article

Title: On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain (English)
Author: Shahrokhi-Dehkordi, M.S.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 1
Year: 2017
Pages: 13-20
Summary lang: English
.
Category: math
.
Summary: Let $\Omega \subset \mathbb{R}^n$ be a bounded starshaped domain and consider the $(p,q)$-Laplacian problem \begin{align*} -\Delta_p u-\Delta_q u = \lambda ({\bf x} )\lvert u\rvert^{p^\star -2} u+\mu |u|^{r-2} u \end{align*} where $\mu$ is a positive parameter, $1 < q \le p < n$, $r\ge p^{\star}$ and $p^{\star}:=\frac{np}{n-p}$ is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the $(p, q)$-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity. (English)
Keyword: Quasi-linear elliptic problem
Keyword: $(p,q)$-Laplacian operator
Keyword: Critical Sobolev-Hardy exponent
Keyword: Starshaped domain.
MSC: 35B33
MSC: 35J20
MSC: 35J92
MSC: 58E05
idZBL: Zbl 1391.35170
idMR: MR3667073
.
Date available: 2017-09-01T12:12:17Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146841
.
Reference: [1] Benci, V., Cerami, G.: Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{(N+2)/(N-2)}$ in $\mathbb{R}^N$.J. Funct. Anal., 88, 1990, 91-117, MR 1033915
Reference: [2] Benci, V., D'Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick's problem and infinitely many solutions.Arch. Ration. Mech. Anal., 154, 4, 2000, 297-324, Zbl 0973.35161, MR 1785469, 10.1007/s002050000101
Reference: [3] Benci, V., Micheletti, A. M., Visetti, D.: An eigenvalue problem for a quasilinear elliptic field equation.J. Differ. Equ., 184, 2, 2002, 299-320, Zbl 1157.35348, MR 1929880, 10.1006/jdeq.2001.4155
Reference: [4] Candito, P., Marano, S. A., Perera, K.: On a class of critical $(p, q)$-Laplacian problems.Nonlinear Differ. Equ. Appl., 22, 2015, 1959-1972, Zbl 1328.35053, MR 3415031, 10.1007/s00030-015-0353-y
Reference: [5] Cherfils, L., Iĺyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with $p\&q$-Laplacian.Commun. Pure Appl. Anal., 4, 1, 2005, 9-22, Zbl 1210.35090, MR 2126276
Reference: [6] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles.J. Math. Phys., 5, 1964, 1252-1254, MR 0174304, 10.1063/1.1704233
Reference: [7] Fife, P. C.: Mathematical aspects of reacting and diffusing systems.Lecture Notes in Biomathematics, 28, 1979, Springer, Berlin, Zbl 0403.92004, MR 0527914, 10.1007/978-3-642-93111-6
Reference: [8] Figueiredo, G. M.: Existence of positive solutions for a class of $p\&q$ elliptic problems with critical growth on $\mathbb{R}^n$.J. Math. Anal. Appl., 378, 2011, 507-518, MR 2773261, 10.1016/j.jmaa.2011.02.017
Reference: [9] Filippucci, R., Pucci, P., Robert, F.: On a $p$-Laplace equation with multiple critical nonlinearitie.J. Math. Pures Appl, 91, 2009, 156-177, MR 2498753, 10.1016/j.matpur.2008.09.008
Reference: [10] Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents.Trans. Amer. Math. Soc., 352, 2000, 5703-5743, Zbl 0956.35056, MR 1695021, 10.1090/S0002-9947-00-02560-5
Reference: [11] Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents.Nonlinear Anal., 13, 1989, 879-902, Zbl 0714.35032, MR 1009077, 10.1016/0362-546X(89)90020-5
Reference: [12] Guo, Q., Han, J., Niu, P.: Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains.Nonlinear Analysis, 75, 2012, 5765-5786, Zbl 1250.35083, MR 2948296, 10.1016/j.na.2012.05.021
Reference: [13] Kang, D.: Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term.J. Math. Anal. Appl., 341, 2008, 764-782, Zbl 1137.35378, MR 2398246, 10.1016/j.jmaa.2007.10.058
Reference: [14] Li, G. B., Liang, X.: The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$-Laplacian type on $\mathbb{R}^N$.Nonlinear Anal., 71, 2009, 2316-2334, MR 2524439, 10.1016/j.na.2009.01.066
Reference: [15] Li, Y., Ruf, B., Guo, Q., Niu, P.: Quasilinear elliptic problems with combined critical Sobolev-Hardy terms.Annali di Matematica, 192, 2013, 93-113, Zbl 1292.35104, MR 3011325, 10.1007/s10231-011-0213-2
Reference: [16] López, R.: Constant Mean Curvature Surfaces with Boundary.2013, Springer Monographs in Mathematics, Zbl 1329.53099, MR 3098467
Reference: [17] Marano, S. A., Papageorgiou, N. S.: Constant-sign and nodal solutions of coercive $(p,q)$-Laplacian problems.Nonlinear Anal., 77, 2013, 118-129, Zbl 1260.35036, MR 2988766, 10.1016/j.na.2012.09.007
Reference: [18] Shahrokhi-Dehkordi, M. S., Taheri, A.: Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps.Journal of Convex Analysis, 17, 1, 2010, 69-79, Zbl 1186.49033, MR 2642716
Reference: [19] Sun, M.: Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance.J. Math. Anal. Appl., 386, 2, 2012, 661-668, Zbl 1229.35089, MR 2834776, 10.1016/j.jmaa.2011.08.030
Reference: [20] Wilhelmsson, H.: Explosive instabilities of reaction-diffusion equations.Phys. Rev. A, 36, 2, 1987, 965-966, MR 0901723, 10.1103/PhysRevA.36.965
Reference: [21] Yin, H., Yang, Z.: A class of $p-q$-Laplacian type equation with concave-convex nonlinearities in bounded domain.J. Math. Anal. Appl., 382, 2011, 843-855, Zbl 1222.35083, MR 2810836, 10.1016/j.jmaa.2011.04.090
.

Files

Files Size Format View
ActaOstrav_25-2017-1_3.pdf 477.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo