Previous |  Up |  Next

Article

Title: Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error (English)
Author: Oswald, Peter
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 5
Year: 2017
Pages: 433-457
Summary lang: English
.
Category: math
.
Summary: Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete $H^1$ norm best approximation error estimates for $H^2$ functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate on an example of a special family of distorted triangulations that this dependence is essential, and due to the deterioration of the consistency error. We also provide examples of sequences of triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial solution do not converge or converge at arbitrarily low speed. The results complement analogous findings for conforming P1 finite elements. (English)
Keyword: nonconforming P1 element
Keyword: lowest order Raviart-Thomas element
Keyword: discrete energy norm estimate
Keyword: divergence of finite element method
Keyword: maximum angle condition
Keyword: distorted triangulation
MSC: 65N12
MSC: 65N15
MSC: 65N30
idZBL: Zbl 06819515
idMR: MR3722898
DOI: 10.21136/AM.2017.0150-17
.
Date available: 2017-10-31T08:59:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146914
.
Reference: [1] Acosta, G., Durán, R. G.: The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations.SIAM J. Numer. Anal. 37 (1999), 18-36. Zbl 0948.65115, MR 1721268, 10.1137/S0036142997331293
Reference: [2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [3] Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics.Cambridge University Press, Cambridge (2007). Zbl 1118.65117, MR 2322235, 10.1017/CBO9780511618635
Reference: [4] Braess, D.: An a posteriori error estimate and a comparison theorem for the nonconforming $P_1$ element.Calcolo 46 (2009), 149-155. Zbl 1192.65142, MR 2520373, 10.1007/s10092-009-0003-z
Reference: [5] Brenner, S. C.: Poincaré-Friedrichs inequalities for piecewise $H^1$ functions.SIAM J. Numer. Anal. 41 (2003), 306-324. Zbl 1045.65100, MR 1974504, 10.1137/S0036142902401311
Reference: [6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15, Springer, New York (2008). Zbl 0804.65101, MR 2373954, 10.1007/978-0-387-75934-0
Reference: [7] Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods.J. Comput. Math. 30 (2012), 337-353. Zbl 1274.65290, MR 2965987, 10.4208/jcm.1108-m3677
Reference: [8] Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem.SIAM J. Numer. Anal. 50 (2012), 2803-2823. Zbl 1261.65115, MR 3022243, 10.1137/110845707
Reference: [9] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I.Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76. Zbl 0302.65087, MR 0343661, 10.1051/m2an/197307R300331
Reference: [10] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2
Reference: [11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse Numer. 10 (1976), 43-60. Zbl 0346.65052, MR 0455282, 10.1051/m2an/197610r100431
Reference: [12] Kučera, V.: On necessary and sufficient conditions for finite element convergence.arXiv:1601.02942 (2016). MR 3700195
Reference: [13] Marini, L. D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method.SIAM J. Numer. Anal. 22 (1985), 493-496. Zbl 0573.65082, MR 0787572, 10.1137/0722029
Reference: [14] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulatiuons revisited.Appl. Math., Praha 60 (2015), 473-484. Zbl 1363.65202, MR 3396476, 10.1007/s10492-015-0107-5
Reference: [15] Raviart, P.-A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems.Mathematical Aspects of Finite Element Method I. Galligani, E. Magenes Proc. Conf., Rome, 1975, Lect. Notes Math. 606, Springer, New York (1977), 292-315. Zbl 0362.65089, MR 0483555, 10.1007/bfb0064470
Reference: [16] Schwarz, H. A.: Sur une définition erroneé de l'aire d'une surface courbe.Gesammelte Mathematische Abhandlungen 2 Springer, Berlin (1890), 309-311, 369-370.
Reference: [17] Vohralík, M.: On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space $H^1$.Numer. Funct. Anal. Optimization 26 (2005), 925-952. Zbl 1089.65124, MR 2192029, 10.1080/01630560500444533
.

Files

Files Size Format View
AplMat_62-2017-5_1.pdf 662.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo