Previous |  Up |  Next


Title: Numerical analysis of a Stokes interface problem based on formulation using the characteristic function (English)
Author: Sugitani, Yoshiki
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 5
Year: 2017
Pages: 459-476
Summary lang: English
Category: math
Summary: Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates of order $h^{1/2}$ in $H^1\times L^2$ norm for the velocity and pressure, and of order $h$ in $L^2$ norm for the velocity are derived. Those theoretical results are also verified by numerical examples. (English)
Keyword: interface problem
Keyword: Stokes equation
Keyword: finite element method
MSC: 65N15
MSC: 65N30
MSC: 74A50
MSC: 74F10
MSC: 76D07
idZBL: Zbl 06819516
idMR: MR3722899
DOI: 10.21136/AM.2017.0357-16
Date available: 2017-10-31T08:59:43Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140, Academic Press, New York (2003). Zbl 1098.46001, MR 2424078
Reference: [2] Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method.Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. Zbl 1186.76661, MR 2359913, 10.1142/S0218202507002352
Reference: [3] Boffi, D., Gastaldi, L., Heltai, L., Peskin, C. S.: On the hyper-elastic formulation of the immersed boundary method.Comput. Methods Appl. Mech. Eng. 197 (2008), 2210-2231. Zbl 1158.74523, MR 2412821, 10.1016/j.cma.2007.09.015
Reference: [4] Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I: Linearized equations.SIAM J. Math. Anal. 20 (1989), 74-97. Zbl 0681.35071, MR 0977489, 10.1137/0520006
Reference: [5] Floryan, J. M., Rasmussen, H.: Numerical methods for viscous flows with moving boundaries.Appl. Mech. Rev. 42 (1989), 323-341. MR 1028357, 10.1115/1.3152416
Reference: [6] Fujita, H., Kawahara, H., Kawarada, H.: Distribution theoretic approach to fictitious domain method for Neumann problems.East-West J. Numer. Math. 3 (1995), 111-126. Zbl 0833.65120, MR 1342887
Reference: [7] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [8] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013
Reference: [9] Hou, T. Y.: Numerical solutions to free boundary problems.Acta Numerica 1995 Cambridge University Press, Cambridge A. Iserles (1995), 335-415. Zbl 0831.65137, MR 1352474, 10.1017/S0962492900002567
Reference: [10] Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon.J. Funct. Anal. 21 (1976), 397-431. Zbl 0317.35037, MR 0404849, 10.1016/0022-1236(76)90035-5
Reference: [11] Nečas, J.: Direct Methods in the Theory of Elliptic Equations.Springer Monographs in Mathematics, Springer, Berlin (2012). Zbl 1246.35005, MR 3014461, 10.1007/978-3-642-10455-8
Reference: [12] Ohmori, K., Saito, N.: On the convergence of finite element solutions to the interface problem for the Stokes system.J. Comput. Appl. Math. 198 (2007), 116-128. Zbl 1100.76036, MR 2250391, 10.1016/
Reference: [13] Peskin, C. S.: Flow patterns around heart valves: a numerical method.J. Comput. Phys. 10 (1972), 252-271. Zbl 0244.92002, 10.1016/0021-9991(72)90065-4
Reference: [14] Peskin, C. S.: Numerical analysis of blood flow in the heart.J. Comput. Phys. 25 (1977), 220-252. Zbl 0403.76100, MR 0490027, 10.1016/0021-9991(77)90100-0
Reference: [15] Peskin, C. S.: The immersed boundary method.Acta Numerica 11 (2002), 479-517. Zbl 1123.74309, MR 2009378, 10.1017/S0962492902000077
Reference: [16] Quarteroni, A.: Numerical Models for Differential Problems.MS&A. Modeling, Simulation and Applications 8, Springer, Milano (2014). Zbl 1285.65054, MR 3183828, 10.1007/978-88-470-5522-3
Reference: [17] Saito, N., Sugitani, Y.: Convergence of the immersed-boundary finite-element method for the Stokes problem.ArXiv:1611.07172.
Reference: [18] Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow.Annual Review of Fluid Mechanics Annu. Rev. Fluid Mech. 31, Annual Reviews, Palo Alto (1999), 567-603. MR 1670950, 10.1146/annurev.fluid.31.1.567
Reference: [19] Tabata, M.: Finite element schemes based on energy-stable approximation for two-fluid flow problems with surface tension.Hokkaido Math. J. 36 (2007), 875-890. Zbl 1134.76032, MR 2378296, 10.14492/hokmj/1272848038
Reference: [20] Tornberg, A.-K., Engquist, B.: Numerical approximations of singular source terms in differential equations.J. Comput. Phys. 200 (2004), 462-488. Zbl 1115.76392, MR 2095274, 10.1016/


Files Size Format View
AplMat_62-2017-5_2.pdf 441.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo