Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
inverse scattering; factorization method; crack; inhomogeneous media
Summary:
We consider the inverse scattering problem of determining the shape and location of a crack surrounded by a known inhomogeneous media. Both the Dirichlet boundary condition and a mixed type boundary conditions are considered. In order to avoid using the background Green function in the inversion process, a reciprocity relationship between the Green function and the solution of an auxiliary scattering problem is proved. Then we focus on extending the factorization method to our inverse shape reconstruction problems by using far field measurements at fixed wave number. We remark that this is done in a non intuitive space for the mixed type boundary condition as we indicate in the sequel.
References:
[1] Hassen, F. Ben, Boukari, Y., Haddar, H.: Application of the linear sampling method to identify cracks with impedance boundary conditions. Inverse Probl. Sci. Eng. 21 (2013), 210-234. DOI 10.1080/17415977.2012.686997 | MR 3022417 | Zbl 1267.78036
[2] Bondarenko, O., Kirsch, A., Liu, X.: The factorization method for inverse acoustic scattering in a layered medium. Inverse Probl. 29 (2013), Article ID 045010, 19 pages. DOI 10.1088/0266-5611/29/4/045010 | MR 3042086 | Zbl 1273.65167
[3] Boukari, Y., Haddar, H.: The factorization method applied to cracks with impedance boundary conditions. Inverse Probl. Imaging 7 (2013), 1123-1138. DOI 10.3934/ipi.2013.7.1123 | MR 3180673 | Zbl 1302.35430
[4] Cakoni, F., Colton, D.: The linear sampling method for cracks. Inverse Probl. 19 (2003), 279-295. DOI 10.1088/0266-5611/19/2/303 | MR 1991789 | Zbl 1171.35487
[5] Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. An Introduction. Interaction of Mechanics and Mathematics, Springer, Berlin (2006). DOI 10.1007/3-540-31230-7 | MR 2256477 | Zbl 1099.78008
[6] Cakoni, F., Fares, M'B., Haddar, H.: Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Probl. 22 (2006), 845-867. DOI 10.1088/0266-5611/22/3/007 | MR 2235641 | Zbl 1099.35167
[7] Cakoni, F., Harris, I.: The factorization method for a defective region in an anisotropic material. Inverse Probl. 31 (2015), Article ID 025002, 22 pages. DOI 10.1088/0266-5611/31/2/025002 | MR 3303167 | Zbl 1327.78016
[8] Colton, D., Haddar, H.: An application of the reciprocity gap functional to inverse scattering theory. Inverse Probl. 21 (2005), 383-398. DOI 10.1088/0266-5611/21/1/023 | MR 2146182 | Zbl 1086.35129
[9] Grisel, Y., Mouysset, V., Mazet, P.-A., Raymond, J.-P.: Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements. Inverse Probl. 28 (2012), Article ID 055003, 19 pages. DOI 10.1088/0266-5611/28/5/055003 | MR 2915291 | Zbl 1239.78008
[10] Guo, J., Hu, J., Yan, G.: Application of the factorization method to retrieve a crack from near field data. J. Inverse Ill-Posed Probl. 24 (2016), 527-541. DOI 10.1515/jiip-2014-0073 | MR 3552500 | Zbl 06641005
[11] Guo, J., Wu, Q., Yan, G.: The inverse scattering problem by a crack buried in a piecewise homogeneous medium. IMA J. Appl. Math. 80 (2015), 1199-1218. DOI 10.1093/imamat/hxu049 | MR 3384435 | Zbl 1330.35436
[12] Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Methods Appl. Sci. 11 (1989), 789-804. DOI 10.1002/mma.1670110605 | MR 1021401 | Zbl 0692.35073
[13] Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and Its Applications 36, Oxford University Press, Oxford (2008). DOI 10.1093/acprof:oso/9780199213535.001.0001 | MR 2378253 | Zbl 1222.35001
[14] Kirsch, A., Päivärinta, L.: On recovering obstacles inside inhomogeneities. Math. Methods Appl. Sci. 21 (1998), 619-651. DOI 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P | MR 1615992 | Zbl 0915.35116
[15] Kirsch, A., Ritter, S.: A linear sampling method for inverse scattering from an open arc. Inverse Probl. 16 (2000), 89-105. DOI 10.1088/0266-5611/16/1/308 | MR 1741229 | Zbl 0968.35129
[16] Lechleiter, A.: The factorization method is independent of transmission eigenvalues. Inverse Probl. Imaging 3 (2009), 123-138. DOI 10.3934/ipi.2009.3.123 | MR 2558306 | Zbl 1184.78020
[17] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). MR 1742312 | Zbl 0948.35001
[18] Nachman, A. I., Päivärinta, L., Teirilä, A.: On imaging obstacles inside inhomogeneous media. J. Funct. Anal. 252 (2007), 490-516. DOI 10.1016/j.jfa.2007.06.020 | MR 2360925 | Zbl 1131.78004
[19] Potthast, R.: Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall/CRC Research Notes in Mathematics 427, Chapman & Hall/CRC, Boca Raton (2001). DOI 10.1201/9781420035483 | MR 1853728 | Zbl 0985.78016
[20] Prössdorf, S., Saranen, J.: A fully discrete approximation method for the exterior Neumann problem of the Helmholtz equation. Z. Anal. Anwend. 13 (1994), 683-695. DOI 10.4171/ZAA/483 | MR 1305602 | Zbl 0822.65095
[21] Zeev, N., Cakoni, F.: The identification of thin dielectric objects from far field or near field scattering data. SIAM J. Appl. Math. 69 (2009), 1024-1042. DOI 10.1137/070711542 | MR 2476589 | Zbl 1173.35741
Partner of
EuDML logo