Previous |  Up |  Next

Article

Title: The factorization method for cracks in inhomogeneous media (English)
Author: Guo, Jun
Author: Yan, Guozheng
Author: Jin, Jing
Author: Hu, Junhao
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 5
Year: 2017
Pages: 509-533
Summary lang: English
.
Category: math
.
Summary: We consider the inverse scattering problem of determining the shape and location of a crack surrounded by a known inhomogeneous media. Both the Dirichlet boundary condition and a mixed type boundary conditions are considered. In order to avoid using the background Green function in the inversion process, a reciprocity relationship between the Green function and the solution of an auxiliary scattering problem is proved. Then we focus on extending the factorization method to our inverse shape reconstruction problems by using far field measurements at fixed wave number. We remark that this is done in a non intuitive space for the mixed type boundary condition as we indicate in the sequel. (English)
Keyword: inverse scattering
Keyword: factorization method
Keyword: crack
Keyword: inhomogeneous media
MSC: 45Q05
idZBL: Zbl 06819519
idMR: MR3722902
DOI: 10.21136/AM.2017.0194-16
.
Date available: 2017-10-31T09:01:28Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146919
.
Reference: [1] Hassen, F. Ben, Boukari, Y., Haddar, H.: Application of the linear sampling method to identify cracks with impedance boundary conditions.Inverse Probl. Sci. Eng. 21 (2013), 210-234. Zbl 1267.78036, MR 3022417, 10.1080/17415977.2012.686997
Reference: [2] Bondarenko, O., Kirsch, A., Liu, X.: The factorization method for inverse acoustic scattering in a layered medium.Inverse Probl. 29 (2013), Article ID 045010, 19 pages. Zbl 1273.65167, MR 3042086, 10.1088/0266-5611/29/4/045010
Reference: [3] Boukari, Y., Haddar, H.: The factorization method applied to cracks with impedance boundary conditions.Inverse Probl. Imaging 7 (2013), 1123-1138. Zbl 1302.35430, MR 3180673, 10.3934/ipi.2013.7.1123
Reference: [4] Cakoni, F., Colton, D.: The linear sampling method for cracks.Inverse Probl. 19 (2003), 279-295. Zbl 1171.35487, MR 1991789, 10.1088/0266-5611/19/2/303
Reference: [5] Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. An Introduction.Interaction of Mechanics and Mathematics, Springer, Berlin (2006). Zbl 1099.78008, MR 2256477, 10.1007/3-540-31230-7
Reference: [6] Cakoni, F., Fares, M'B., Haddar, H.: Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects.Inverse Probl. 22 (2006), 845-867. Zbl 1099.35167, MR 2235641, 10.1088/0266-5611/22/3/007
Reference: [7] Cakoni, F., Harris, I.: The factorization method for a defective region in an anisotropic material.Inverse Probl. 31 (2015), Article ID 025002, 22 pages. Zbl 1327.78016, MR 3303167, 10.1088/0266-5611/31/2/025002
Reference: [8] Colton, D., Haddar, H.: An application of the reciprocity gap functional to inverse scattering theory.Inverse Probl. 21 (2005), 383-398. Zbl 1086.35129, MR 2146182, 10.1088/0266-5611/21/1/023
Reference: [9] Grisel, Y., Mouysset, V., Mazet, P.-A., Raymond, J.-P.: Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements.Inverse Probl. 28 (2012), Article ID 055003, 19 pages. Zbl 1239.78008, MR 2915291, 10.1088/0266-5611/28/5/055003
Reference: [10] Guo, J., Hu, J., Yan, G.: Application of the factorization method to retrieve a crack from near field data.J. Inverse Ill-Posed Probl. 24 (2016), 527-541. Zbl 06641005, MR 3552500, 10.1515/jiip-2014-0073
Reference: [11] Guo, J., Wu, Q., Yan, G.: The inverse scattering problem by a crack buried in a piecewise homogeneous medium.IMA J. Appl. Math. 80 (2015), 1199-1218. Zbl 1330.35436, MR 3384435, 10.1093/imamat/hxu049
Reference: [12] Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory.Math. Methods Appl. Sci. 11 (1989), 789-804. Zbl 0692.35073, MR 1021401, 10.1002/mma.1670110605
Reference: [13] Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems.Oxford Lecture Series in Mathematics and Its Applications 36, Oxford University Press, Oxford (2008). Zbl 1222.35001, MR 2378253, 10.1093/acprof:oso/9780199213535.001.0001
Reference: [14] Kirsch, A., Päivärinta, L.: On recovering obstacles inside inhomogeneities.Math. Methods Appl. Sci. 21 (1998), 619-651. Zbl 0915.35116, MR 1615992, 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P
Reference: [15] Kirsch, A., Ritter, S.: A linear sampling method for inverse scattering from an open arc.Inverse Probl. 16 (2000), 89-105. Zbl 0968.35129, MR 1741229, 10.1088/0266-5611/16/1/308
Reference: [16] Lechleiter, A.: The factorization method is independent of transmission eigenvalues.Inverse Probl. Imaging 3 (2009), 123-138. Zbl 1184.78020, MR 2558306, 10.3934/ipi.2009.3.123
Reference: [17] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations.Cambridge University Press, Cambridge (2000). Zbl 0948.35001, MR 1742312
Reference: [18] Nachman, A. I., Päivärinta, L., Teirilä, A.: On imaging obstacles inside inhomogeneous media.J. Funct. Anal. 252 (2007), 490-516. Zbl 1131.78004, MR 2360925, 10.1016/j.jfa.2007.06.020
Reference: [19] Potthast, R.: Point Sources and Multipoles in Inverse Scattering Theory.Chapman & Hall/CRC Research Notes in Mathematics 427, Chapman & Hall/CRC, Boca Raton (2001). Zbl 0985.78016, MR 1853728, 10.1201/9781420035483
Reference: [20] Prössdorf, S., Saranen, J.: A fully discrete approximation method for the exterior Neumann problem of the Helmholtz equation.Z. Anal. Anwend. 13 (1994), 683-695. Zbl 0822.65095, MR 1305602, 10.4171/ZAA/483
Reference: [21] Zeev, N., Cakoni, F.: The identification of thin dielectric objects from far field or near field scattering data.SIAM J. Appl. Math. 69 (2009), 1024-1042. Zbl 1173.35741, MR 2476589, 10.1137/070711542
.

Files

Files Size Format View
AplMat_62-2017-5_5.pdf 350.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo