Previous |  Up |  Next

Article

Title: On the order of convolution consistence of the analytic functions with negative coefficients (English)
Author: Sălăgean, Grigore S.
Author: Venter, Adela
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 4
Year: 2017
Pages: 381-386
Summary lang: English
.
Category: math
.
Summary: Making use of a modified Hadamard product, or convolution, of analytic functions with negative coefficients, combined with an integral operator, we study when a given analytic function is in a given class. Following an idea of U. Bednarz and J. Sokół, we define the order of convolution consistence of three classes of functions and determine a given analytic function for certain classes of analytic functions with negative coefficients. (English)
Keyword: analytic function with negative coefficients
Keyword: univalent function
Keyword: extreme point
Keyword: order of convolution consistence
Keyword: starlikeness
Keyword: convexity
MSC: 30C45
MSC: 30C50
idZBL: Zbl 06819592
idMR: MR3739024
DOI: 10.21136/MB.2017.0019-15
.
Date available: 2017-11-20T15:02:26Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146977
.
Reference: [1] Bălăeţi, C. M.: An integral operator associated with differential superordinations.An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 17 (2009), 37-44. Zbl 1199.30049, MR 2573368
Reference: [2] Bednarz, U., Sokół, J.: On order convolution consistence of the analytic functions.Stud. Univ. Babeş-Bolyai Math. 55 (2010), 45-51. Zbl 1240.30037, MR 2764250
Reference: [3] Gupta, V. P., Jain, P. K.: Certain classes of univalent functions with negative coefficients.Bull. Aust. Math. Soc. 14 (1976), 409-416. Zbl 323.30016, MR 0414849, 10.1017/S0004972700025326
Reference: [4] Sălăgean, G. S.: Subclasses of univalent functions.Complex Analysis, Proceedings 5th Rom.-Finn. Semin., Bucharest 1981, Part 1 (C. Andreian Cazacu at al., eds.) Lecture Notes in Math. 1013. Springer, Berlin (1983), 362-372. Zbl 0531.30009, MR 0738107, 10.1007/BFb0066543
Reference: [5] Sălăgean, G. S.: Classes of univalent functions with two fixed points.Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1984 Univ. "Babeş-Bolyai'' (1984), 181-184. MR 0788744
Reference: [6] Sălăgean, G. S.: On univalent functions with negative coefficients.Prepr., "Babeş-Bolyai'' Univ., Fac. Math. Phys., Res. Semin. 7 (1991), 47-54. Zbl 0766.30010, MR 1206741
Reference: [7] Schild, A., Silverman, H.: Convolutions of univalent functions with negative coefficients.Ann. Univ. Mariae Curie-Skłodowska, Sect. A (1975) 29 (1977), 99-107. Zbl 0363.30018, MR 0457698
Reference: [8] Silverman, H.: Univalent functions with negative coefficients.Proc. Am. Math. Soc. 51 (1975), 109-116. Zbl 311.30007, MR 0369678, 10.2307/2039855
.

Files

Files Size Format View
MathBohem_142-2017-4_4.pdf 211.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo