Previous |  Up |  Next

Article

Title: Sur les représentations tempérées d'un groupe réductif $p$-adique non connexe: Cas où $G/G^{0}$ est commutatif et fini (French)
Author: Bettaïeb, Karem
Language: French
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 4
Year: 2017
Pages: 387-403
Summary lang: English
.
Category: math
.
Summary: Soit $G$ l'ensemble des points rationnels d'un groupe algébrique réductif non connexe $p$-adique de caractéristique $0$. Soit $G^{0}$ la composante neutre de $G$. On suppose que $G/G^{0}$ est commutatif et fini. Notre motivation pour cette note est de rejoindre le cas connexe d'un papier précédent, Bettaïeb, (2003). Autrement dit, de retrouver une analogue à notre classification des représentations irréductibles tempérées de $G$, lorsque $G$ est connexe. C'est-à-dire que toute représentation irréductible tempérée de $G$ est irréductiblement induite d'une limite de série discrète d'un sous-groupe de Lévi cuspidal de $G$. (French)
Keyword: reductive $p$-adic group
Keyword: tempered representation
MSC: 11E95
MSC: 20G05
MSC: 20G15
idZBL: Zbl 06819593
idMR: MR3739025
DOI: 10.21136/MB.2017.0043-13
.
Date available: 2017-11-20T15:02:53Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146978
.
Reference: [1] Arthur, J.: On elliptic tempered characters.Acta Math. 171 (1993), 73-138. Zbl 0822.22011, MR 1237898, 10.1007/BF02392767
Reference: [2] Bernstein, I. N., Zelevinsky, A. V.: Induced representations of reductive $p$-adic groups I.Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 441-472. Zbl 0412.22015, MR 579172, 10.24033/asens.1333
Reference: [3] eb, K. Bettaï: On the tempered representations of a $p$-adic reductive group.C. R. Math. Acad. Sci., Soc. R. Can. 26 (2004), 1-3 (in French). Zbl 1053.22011, MR 2036907
Reference: [4] eb, K. Bettaï: Classification of tempered representations of a $p$-adic group.Can. J. Math. 55 (2003), 1121-1133 (in French). Zbl 1039.22011, MR 2016242, 10.4153/CJM-2003-044-9
Reference: [5] Clozel, L.: Invariant harmonic analysis on the Schwartz space of a reductive $p$-adic group.Harmonic Analysis on Reductive Groups Proc. Conf., Bowdoin College, Brunswick, 1989. Progress in Mathematics. Vol 101 (W. Barker et al., eds). Birkhäuser, Boston (1991), 101-121. Zbl 0760.22023, MR 1168480, 10.1007/978-1-4612-0455-8_6
Reference: [6] Clozel, L.: Characters of non-connected reductive $p$-adic groups.Can. J. Math. 39 (1987), 149-167. Zbl 0629.22008, MR 889110, 10.4153/CJM-1987-008-3
Reference: [7] Goldberg, D., Herb, R.: Some results on the admissible representations of non-connected $p$-adic groups.Ann. Sci. Éc. Norm. Supér. (4) 30 (1997), 97-146. Zbl 0874.22016, MR 1422314, 10.1016/S0012-9593(97)89916-8
Reference: [8] Harish-Chandra: Supertempered distributions on real reductive groups.Adv. Math., Suppl. Stud. 8 (1983), 139-158. Zbl 0512.22005, MR 0759909
Reference: [9] Herb, R. A.: Supertempered virtual characters.Compos. Math. 93 (1994), 139-154. Zbl 0851.22022, MR 1287694
Reference: [10] Kazhdan, D.: Cuspidal geometry of $p$-adic groups.J. Anal. Math. 47 (1986), 1-36. Zbl 0634.22009, MR 874042, 10.1007/BF02792530
Reference: [11] Silberger, A. J.: Introduction to Harmonic Analysis on Reductive $p$-adic Groups. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971-1973.Mathematical Notes 23. Princeton University Press, Princeton, and University of Tokyo Press, Tokyo (1979). Zbl 0458.22006, MR 0544991, 10.1515/9781400871131
.

Files

Files Size Format View
MathBohem_142-2017-4_5.pdf 322.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo