Previous |  Up |  Next

Article

Title: Preconditioning of two-by-two block matrix systems with square matrix blocks, with applications (English)
Author: Axelsson, Owe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 6
Year: 2017
Pages: 537-559
Summary lang: English
.
Category: math
.
Summary: Two-by-two block matrices of special form with square matrix blocks arise in important applications, such as in optimal control of partial differential equations and in high order time integration methods. Two solution methods involving very efficient preconditioned matrices, one based on a Schur complement reduction of the given system and one based on a transformation matrix with a perturbation of one of the given matrix blocks are presented. The first method involves an additional inner solution with the pivot matrix block but gives a very tight condition number bound when applied for a time integration method. The second method does not involve this matrix block but only inner solutions with a linear combination of the pivot block and the off-diagonal matrix blocks. Both the methods give small condition number bounds that hold uniformly in all parameters involved in the problem, i.e. are fully robust. The paper presents shorter proofs, extended and new results compared to earlier publications. (English)
Keyword: preconditioning
Keyword: Schur complement
Keyword: transformation
Keyword: optimal control
Keyword: implicit time integration
MSC: 65F08
idZBL: Zbl 06861545
idMR: MR3745740
DOI: 10.21136/AM.2017.0222-17
.
Date available: 2018-01-02T13:41:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146997
.
Reference: [1] Axelsson, O.: On the efficiency of a class of $A$-stable methods.BIT, Nord. Tidskr. Inf.-behandl. 14 (1974), 279-287. Zbl 0289.65028, MR 0391518, 10.1007/BF01933227
Reference: [2] Axelsson, O., Blaheta, R., Kohut, R.: Preconditioning methods for high-order strongly stable time integration methods with an application for a DAE problem.Numer. Linear Algebra Appl. 22 (2015), 930-949. Zbl 06604516, MR 3426322, 10.1002/nla.2015
Reference: [3] Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. Poisson and convection-diffusion control.Numer. Algorithms 73 (2016), 631-663. Zbl 1353.65059, MR 3564863, 10.1007/s11075-016-0111-1
Reference: [4] Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. Stokes control.Numer. Algorithms 74 (2017), 19-37. Zbl 1365.65167, MR 3590387, 10.1007/s11075-016-0136-5
Reference: [5] Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems.Numer. Linear Algebra Appl. 7 (2000), 197-218. Zbl 1051.65025, MR 1762967, 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
Reference: [6] Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems.Numer. Algorithms 66 (2014), 811-841. Zbl 1307.65034, MR 3240302, 10.1007/s11075-013-9764-1
Reference: [7] Axelsson, O., Vassilevski, P. S.: A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning.SIAM J. Matrix Anal. Appl. 12 (1991), 625-644. Zbl 0748.65028, MR 1121697, 10.1137/0612048
Reference: [8] Bai, Z.-Z.: On preconditioned iteration methods for complex linear systems.J. Eng. Math. 93 (2015), 41-60. Zbl 1360.65089, MR 3386091, 10.1007/s10665-013-9670-5
Reference: [9] Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems.IMA J. Numer. Anal. 33 (2013), 343-369. Zbl 1271.65100, MR 3020961, 10.1093/imanum/drs001
Reference: [10] Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices.Numer. Algorithms 62 (2013), 655-675. Zbl 1267.65034, MR 3034831, 10.1007/s11075-013-9696-9
Reference: [11] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15, Springer, New York (1991). Zbl 0788.73002, MR 1115205, 10.1007/978-1-4612-3172-1
Reference: [12] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations.John Wiley & Sons, Chichester (2008). Zbl 1167.65041, MR 2401398, 10.1002/9780470753767
Reference: [13] Cahouet, J., Chabard, J.-P.: Some fast 3D finite element solvers for the generalized Stokes problem.Int. J. Numer. Methods Fluids 8 (1988), 869-895. Zbl 0665.76038, MR 0953141, 10.1002/fld.1650080802
Reference: [14] Greenbaum, A., Pták, V., Strakoš, Z.: Any nonincreasing convergence curve is possible for GMRES.SIAM J. Matrix Anal. Appl. 17 (1996), 465-469. Zbl 0857.65029, MR 1397238, 10.1137/S0895479894275030
Reference: [15] Lions, J. L.: Some Aspects of the Optimal Control of Distributed Parameter Systems.CBMS-NSF Regional Conference Series in Applied Mathematics 6, Society for Industrial and Applied Mathematics, Philadelphia (1972). Zbl 0275.49001, MR 0479526, 10.1137/1.9781611970616
Reference: [16] Paige, C. C., Saunders, M. A.: Solution of sparse indefinite systems of linear equations.SIAM J. Numer. Anal. 12 (1975), 617-629. Zbl 0319.65025, MR 0383715, 10.1137/0712047
Reference: [17] Saad, Y.: A flexible inner-outer preconditioned GMRES-algorithm.SIAM J. Sci. Comp. 14 (1993), 461-469. Zbl 0780.65022, MR 1204241, 10.1137/0914028
.

Files

Files Size Format View
AplMat_62-2017-6_2.pdf 360.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo