Previous |  Up |  Next

Article

Title: Algebraic preconditioning for Biot-Barenblatt poroelastic systems (English)
Author: Blaheta, Radim
Author: Luber, Tomáš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 6
Year: 2017
Pages: 561-577
Summary lang: English
.
Category: math
.
Summary: Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite element method in space and implicit Euler method in time and estimating the condition number for such preconditioning. The investigation of preconditioning includes its dependence on material coefficients and parameters of discretization. (English)
Keyword: poroelasticity
Keyword: double permeability
Keyword: preconditioning
Keyword: Schur complement
MSC: 65F08
idZBL: Zbl 06861546
idMR: MR3745741
DOI: 10.21136/AM.2017.0179-17
.
Date available: 2018-01-02T13:42:21Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146998
.
Reference: [1] Arnold, D. N., Falk, R. S., Winther, R.: Preconditioning in $H (div)$ and applications.Math. Comput. 66 (1997), 957-984. Zbl 0870.65112, MR 1401938, 10.1090/S0025-5718-97-00826-0
Reference: [2] Axelsson, O., Blaheta, R.: Preconditioning of matrices partitioned in $2\times 2$ block form: eigenvalue estimates and Schwarz DD for mixed FEM.Numer. Linear Algebra Appl. 17 (2010), 787-810. Zbl 1240.65090, MR 2722647, 10.1002/nla.728
Reference: [3] Axelsson, O., Blaheta, R., Byczanski, P.: Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices.Comput. Visual Sci. 15 (2012), 191-207. MR 3148142, 10.1007/s00791-013-0209-0
Reference: [4] Axelsson, O., Blaheta, R., Luber, T.: Preconditioners for mixed FEM solution of stationary and nonstationary porous media flow problems.Large-Scale Scientific Computing Int. Conf. Lecture Notes in Comput. Sci. 9374, Springer, Cham (2015), 3-14 \99999DOI99999 10.1007/978-3-319-26520-9 1. MR 3480807
Reference: [5] Bai, M., Elsworth, D., Roegiers, J.-C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs.Water Resources Research 29 (1993), 1621-1633. 10.1029/92wr02746
Reference: [6] Barenblatt, G. I., Zheltov, I. P., Kochina, I. N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata).PMM, J. Appl. Math. Mech. 24 1286-1303 (1961), English. Russian original translation from Prikl. Mat. Mekh. 24 852-864 1960. Zbl 0104.21702, 10.1016/0021-8928(60)90107-6
Reference: [7] Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point problems.Acta Numerica 14 (2005), 1-137. Zbl 1115.65034, MR 2168342, 10.1017/S0962492904000212
Reference: [8] Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications.Springer Series in Computational Mathematics 44, Springer, Berlin (2013). Zbl 1277.65092, MR 3097958, 10.1007/978-3-642-36519-5
Reference: [9] project, Decovalex 2019, G, Task: EDZ evolution in sparsely fractured competent rock.http://decovalex.org/task-g.html.
Reference: [10] Elman, H. C., Silvester, D. J., Wathen, A. J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2014). Zbl 1304.76002, MR 3235759, 10.1093/acprof:oso/9780199678792.001.0001
Reference: [11] Gerke, H. H., Genuchten, M. T. Van: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media.Water Resources Research 29 (1993), 305-319. 10.1029/92wr02339
Reference: [12] Halmos, P. R.: Finite-Dimensional Vector Spaces.The University Series in Undergraduate Mathematics, D. van Nostrand Company, Princeton (1958). Zbl 0107.01404, MR 0089819, 10.1007/978-1-4612-6387-6
Reference: [13] Henson, V. E., Yang, U. M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner.Appl. Numer. Math. 41 (2002), 155-177. Zbl 0995.65128, MR 1908755, 10.1016/S0168-9274(01)00115-5
Reference: [14] Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot's consolidation model.Available at arXiv:1706.00724 (2017), 20 pages. MR 3820123
Reference: [15] Joodat, S. H. S., Nakshatrala, K. B., Ballarini, R.: Modeling flow in porous media with double porosity/permeability: A stabilized mixed formulation, error analysis, and numerical solutions.Available at arXiv:1705.08883 (2017), 49 pages. MR 3801794
Reference: [16] Kolesov, A. E., Vabishchevich, P. N.: Splitting schemes with respect to physical processes for double-porosity poroelasticity problems.Russ. J. Numer. Anal. Math. Model. 32 (2017), 99-113. Zbl 06722604, MR 3641710, 10.1515/rnam-2017-0009
Reference: [17] Kraus, J., Lymbery, M., Margenov, S.: Auxiliary space multigrid method based on additive Schur complement approximation.Numer. Linear Algebra Appl. 22 (2015), 965-986. Zbl 06604518, MR 3426324, 10.1002/nla.1959
Reference: [18] Kraus, J., Margenov, S.: Robust Algebraic Multilevel Methods and Algorithms.Radon Series on Computational and Applied Mathematics 5, Walter de Gruyter, Berlin (2009). Zbl 1184.65113, MR 2574100, 10.1515/9783110214833
Reference: [19] Nordbotten, J. M., Rahman, T., Repin, S. I., Valdman, J.: A Posteriori error estimates for approximate solutions of the Barenblatt-Biot poroelastic model.Comput. Methods Appl. Math. 10 (2010), 302-314. Zbl 1283.65100, MR 2770296, 10.2478/cmam-2010-0017
Reference: [20] Rodrigo, C., Hu, X., Ohm, P., Adler, J. H., Gaspar, F. J., Zikatanov, L.: New stabilized discretizations for poroelasticity and the Stokes' equations.Available at arXiv:1706.05169 (2017), 20 pages. MR 3845633
Reference: [21] Warren, J. E., Root, P. J.: The behavior of naturally fractured reservoirs.SPE J. 3 (1963), 245-255. 10.2118/426-PA
.

Files

Files Size Format View
AplMat_62-2017-6_3.pdf 334.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo