Previous |  Up |  Next

Article

Title: Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers (English)
Author: Kurfürst, Petr
Author: Krtička, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 6
Year: 2017
Pages: 633-659
Summary lang: English
.
Category: math
.
Summary: We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes. (English)
Keyword: Eulerian hydrodynamics
Keyword: finite volume
Keyword: operator-split method
Keyword: unsplit method
Keyword: Roe's method
Keyword: curvilinear coordinates
MSC: 76N15
MSC: 85-08
idZBL: Zbl 06861549
idMR: MR3745744
DOI: 10.21136/AM.2017.0135-17
.
Date available: 2018-01-02T13:45:30Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147001
.
Reference: [1] Arnett, D.: Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present.Princeton Series in Astrophysics, Princeton University Press (1996).
Reference: [2] Caramana, E. J., Shashkov, M. J., Whalen, P. P.: Formulations of artificial viscosity for multi-dimensional shock wave computations.J. Comput. Phys. 144 (1998), 70-97. MR 1633037, 10.1006/jcph.1998.5989
Reference: [3] Cargo, P., Gallice, G.: Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws.J. Comput. Phys. 136 (1997), 446-466. Zbl 0919.76053, MR 1474413, 10.1006/jcph.1997.5773
Reference: [4] Chevalier, R. A.: Self-similar solutions for the interaction of stellar ejecta with an external medium.Astrophys. J. 258 (1982), 790-797. 10.1086/160126
Reference: [5] Chevalier, R. A., Soker, N.: Asymmetric envelope expansion of supernova 1987A.Astrophys. J. 341 (1989), 867-882. 10.1086/167545
Reference: [6] Chung, T. J.: Computational Fluid Dynamics.Cambridge University Press, Cambridge (2002). Zbl 1037.76001, MR 1890713, 10.1017/CBO9780511606205
Reference: [7] Hirsch, C.: Numerical Computation of Internal and External Flows. Volume 1: Fundamentals of Numerical Discretization.Wiley Series in Numerical Methods in Engineering, Wiley-Interscience Publication, Chichester (1988). Zbl 0662.76001
Reference: [8] Hirsch, C.: Numerical Computation of Internal and External Flows. Volume 2: Computational Methods for Inviscid and Viscous Flows.Wiley Series in Numerical Methods in Engineering, John Willey & Sons, Chichester (1990). Zbl 0742.76001
Reference: [9] Krtička, J., Kurfürst, P., Krtičková, I.: Magnetorotational instability in decretion disks of critically rotating stars and the outer structure of Be and Be/X-ray disks.Astron. Astrophys. 573 (2015), A20, 7 pages. 10.1051/0004-6361/201424867
Reference: [10] Krtička, J., Owocki, S. P., Meynet, G.: Mass and angular momentum loss via decretion disks.Astron. Astrophys. 527 (2011), A84, 9 pages. 10.1051/0004-6361/201015951
Reference: [11] Kurfürst, P.: Models of Hot Star Decretion Disks.PhD Thesis, Masaryk University, Brno (2015).
Reference: [12] Kurfürst, P., Feldmeier, A., Krtička, J.: Time-dependent modeling of extended thin decretion disks of critically rotating stars.Astron. Astrophys. 569 (2014), A23. 10.1051/0004-6361/201424272
Reference: [13] Kurfürst, P., Feldmeier, A., Krtička, J.: Modeling sgB[e] circumstellar disks.The B[e] Phenomenon: Forty Years of Studies Proc. Conf., Praha 2016, Astron. Soc. Pacific Conf. Ser. 508, Astronomical Society of the Pacific, San Francisco (2017), 17.
Reference: [14] Lee, U., Saio, Y., Osaki, H.: Viscous excretion discs around Be stars.Mon. Not. R. Astron. Soc. 250 (1991), 432-437. 10.1093/mnras/250.2.432
Reference: [15] LeVeque, R. J.: Nonlinear conservation laws and finite volume methods.Computational Methods for Astrophysical Fluid Flow Saas-Fee Advanced Course 27, Lecture notes 1997, Swiss Society for Astrophysics and Astronomy, Springer, Berlin O. Steiner et al. (1998). Zbl 0931.76052, 10.1007/3-540-31632-9_1
Reference: [16] LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems.Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). Zbl 1010.65040, MR 1925043, 10.1017/CBO9780511791253
Reference: [17] Maeder, A.: Physics, Formation and Evolution of Rotating Stars.Springer, Berlin, Heidelberg (2009). 10.1007/978-3-540-76949-1
Reference: [18] Mihalas, D.: Stellar Atmospheres.W. H. Freeman and Co., San Francisco (1978).
Reference: [19] Mihalas, D., Mihalas, B. W.: Foundations of Radiation Hydrodynamics.Oxford University Press, New York (1984). Zbl 0651.76005, MR 0781346
Reference: [20] Nadyozhin, D. K.: On the initial phase of interaction between expanding stellar envelopes and surrounding medium.Astrophys. Space Sci. 112 (1985), 225-249. Zbl 0593.76075, 10.1007/BF00653506
Reference: [21] Norman, M. L., Winkler, K.-H. A.: 2-D Eulerian hydrodynamics with fluid interfaces, self-gravity and rotation.Astrophysical Radiation Hydrodynamics NATO Advanced Science Institutes (ASIC, volume 188), Springer, Dordrecht (1986), 187-221. 10.1007/978-94-009-4754-2_6
Reference: [22] Roache, P. J.: Computational Fluid Dynamics.Hermosa Publishers, Albuquerque (1976). Zbl 0251.76002, MR 0411358
Reference: [23] Roe, P. L.: Approximate Riemann solvers, parameter vectors, and difference schemes.J. Comput. Phys. 135 (1997), 250-258. Zbl 0890.65094, MR 1486275, 10.1006/jcph.1997.5705
Reference: [24] Sedov, L. I.: Similarity and Dimensional Methods in Mechanics.Nauka, Moskva Russian (1987). Zbl 0672.76001, MR 0912491
Reference: [25] Shakura, N. I., Sunyaev, R. A.: Black holes in binary systems: Observational appearance.Astron. Astrophys. 24 (1973), 337-355.
Reference: [26] Skinner, M. A., Ostriker, E. C.: The Athena astrophysical magnetohydrodynamics code in cylindrical geometry.Astrophys. J. Supp. Ser. 188 (2010), 290-311. 10.1088/0067-0049/188/1/290
Reference: [27] Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., Simon, J. B.: Athena: A new code for astrophysical MHD.Astrophys. J. Supp. Ser. 178 (2008), 137-177. MR 1547901, 10.1086/588755
Reference: [28] Stone, J. M., Norman, M. L.: ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I---The hydrodynamic algorithms and tests.Astrophys. J. Supp. Ser. 80 (1992), 753-790. 10.1086/191680
Reference: [29] Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction.Springer, Berlin (2009). Zbl 1227.76006, MR 2731357, 10.1007/b79761
Reference: [30] Truelove, J. K., McKee, C. F.: Evolution of nonradiative supernova remnants.Astrophys. J. Supp. Ser. 120 (1999), 299-326. 10.1086/313176
Reference: [31] Leer, B. van: Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection.J. Comput. Phys. 23 (1977), 276-299. Zbl 0339.76056, 10.1016/0021-9991(77)90095-X
Reference: [32] Leer, B. van: Flux-vector splitting for the Euler equations.Int. Conf. Numerical Methods in Fluid Dynamics Lecture Notes in Physics 170, Springer, Berlin (1982), 507-512. 10.1007/3-540-11948-5_66
Reference: [33] Zel'dovich, Ya. B., Raizer, Yu. P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena.Academic Press, New York (1967). Zbl 0124.42303
.

Files

Files Size Format View
AplMat_62-2017-6_6.pdf 3.872Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo