Previous |  Up |  Next

Article

Title: Control variational method approach to bending and contact problems for Gao beam (English)
Author: Machalová, Jitka
Author: Netuka, Horymír
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 6
Year: 2017
Pages: 661-677
Summary lang: English
.
Category: math
.
Summary: This paper deals with a nonlinear beam model which was published by D. Y. Gao in 1996. It is considered either pure bending or a unilateral contact with elastic foundation, where the normal compliance condition is employed. Under additional assumptions on data, higher regularity of solution is proved. It enables us to transform the problem into a control variational problem. For basic types of boundary conditions, suitable transformations of the problem are derived. The control variational problem contains a simple linear state problem and it is solved by the conditioned gradient method. Illustrative numerical examples are introduced in order to compare the Gao beam with the classical Euler-Bernoulli beam. (English)
Keyword: nonlinear beam
Keyword: elastic foundation
Keyword: contact problem
Keyword: normal compliance condition
Keyword: control variational method
Keyword: finite element method
MSC: 49J15
MSC: 49S05
MSC: 65K10
MSC: 74K10
MSC: 74M15
idZBL: Zbl 06861550
idMR: MR3745745
DOI: 10.21136/AM.2017.0168-17
.
Date available: 2018-01-02T13:46:10Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147002
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Andrews, K. T., Dumont, Y., M'Bengue, M. F., Purcell, J., Shillor, M.: Analysis and simulations of a nonlinear dynamic beam.Z. Angew. Math. Phys. 63 (2012), 1005-1019. Zbl 1261.35093, MR 3000712, 10.1007/s00033-012-0233-9
Reference: [3] Andrews, K. T., Kuttler, K. L., Shillor, M.: Dynamic Gao beam in contact with a reactive or rigid foundation.W. Han et al. Advances in Variational and Hemivariational Inequalities Advances in Mechanics and Mathematics 33, Springer, Cham (2015), 225-248. Zbl 1317.74049, MR 3380538, 10.1007/978-3-319-14490-0_9
Reference: [4] Arnautu, V., Langmach, H., Sprekels, J., Tiba, D.: On the approximation and the optimization of plates.Numer. Funct. Anal. Optimization 21 (2000), 337-354. Zbl 0976.49025, MR 1769880, 10.1080/01630560008816960
Reference: [5] Barboteu, M., Sofonea, M., Tiba, D.: The control variational method for beams in contact with deformable obstacles.ZAMM, Z. Angew. Math. Mech. 92 (2012), 25-40. Zbl 1304.74033, MR 2871899, 10.1002/zamm.201000161
Reference: [6] Cai, K., Gao, D. Y., Qin, Q. H.: Post-buckling solutions of hyper-elastic beam by canonical dual finite element method.Math. Mech. Solids 19 (2014), 659-671. Zbl 1298.74085, MR 3228236, 10.1177/1081286513482483
Reference: [7] Eisley, J. G., Waas, A. M.: Analysis of Structures. An Introduction Including Numerical Methods.John Wiley & Sons, Hoboken (2011). Zbl 1232.74001, 10.1002/9781119993278
Reference: [8] Fučík, S., Kufner, A.: Nonlinear Differential Equations. Studies in Applied Mechanics 2.Elsevier Scientific Publishing Company, Amsterdam (1980). Zbl 0426.35001, MR 0558764
Reference: [9] Gao, D. Y.: Nonlinear elastic beam theory with application in contact problems and variational approaches.Mech. Res. Commun. 23 (1996), 11-17. Zbl 0843.73042, MR 1371779, 10.1016/0093-6413(95)00071-2
Reference: [10] Gao, D. Y.: Duality Principles in Nonconvex Systems. Theory, Methods and Applications.Nonconvex Optimization and Its Applications 39, Kluwer Academic Publihers, Dordrecht (2000). Zbl 0940.49001, MR 1773838, 10.1007/978-1-4757-3176-7
Reference: [11] Gao, D. Y., Machalová, J., Netuka, H.: Mixed finite element solutions to contact problems of nonlinear Gao beam on elastic foundation.Nonlinear Anal., Real World Appl. 22 (2015), 537-550. Zbl 1326.74075, MR 3280850, 10.1016/j.nonrwa.2014.09.012
Reference: [12] Gao, D. Y., Ogden, R. W.: Closed-form solutions, extremality and nonsmoothness criteria in a large deformation elasticity problem.Z. Angew. Math. Phys. 59 (2008), 498-517. Zbl 1143.74018, MR 2399352, 10.1007/s00033-007-7047-1
Reference: [13] Glowinski, R., Lions, J. L., Trémolières, R.: Numerical Analysis of Variational Inequalities.Studies in Mathematics and Its Applications 8, North-Holland Publishing, Amsterdam (1981). Zbl 0463.65046, MR 0635927, 10.1016/s0168-2024(08)70201-7
Reference: [14] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics.Applied Mathematical Sciences 66, Springer, New York (1988). Zbl 0654.73019, MR 0952855, 10.1007/978-1-4612-1048-1
Reference: [15] Horák, J. V., Netuka, H.: Mathematical model of pseudointeractive set: 1D body on non-linear subsoil. I. Theoretical aspects.Engineering Mechanics 14 (2007), 311-325.
Reference: [16] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations.Die Grundlehren der mathematischen Wissenschaften 170, Springer, Berlin (1971). Zbl 0203.09001, MR 0271512
Reference: [17] Machalová, J., Netuka, H.: Solving the beam bending problem with an unilateral Winkler foundation.Numerical Analysis and Applied Mathematics ICNAAM 2011 T. E. Simos et al. AIP Conference Proceedings 1389, AIP-Press, Springer (2011), 1820-1824. 10.1063/1.3636963
Reference: [18] Machalová, J., Netuka, H.: Solution of contact problems for nonlinear Gao beam and obstacle.J. Appl. Math. 2015 (2015), Article ID 420649, 12 pages. MR 3399550, 10.1155/2015/420649
Reference: [19] Machalová, J., Netuka, H.: Solution of contact problems for Gao beam and elastic foundation.(to appear) in Math. Mech. Solids. Special issue on Inequality Problems in Contact Mechanics (2017). MR 3399550, 10.1177/1081286517732382
Reference: [20] Neittaanmäki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems. Theory and Applications.Springer Monographs in Mathematics, Springer, New York (2006). Zbl 1106.49002, MR 2183776, 10.1007/b138797
Reference: [21] Reddy, J. N.: An Introduction to the Finite Element Method.McGraw-Hill Book Company, New York (2006). Zbl 0561.65079, MR 0033470
Reference: [22] Shillor, M., Sofonea, M., Telega, J. J.: Models and Analysis of Quasistatic Contact: Variational Methods.Lecture Notes in Physics 655, Springer, Berlin (2004). Zbl 1069.74001, 10.1007/b99799
Reference: [23] Šimeček, R.: Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem.Appl. Math., Praha 58 (2013), 329-346. Zbl 1289.49002, MR 3066824, 10.1007/s10492-013-0016-4
Reference: [24] Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics.London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge (2012). Zbl 1255.49002, 10.1017/CBO9781139104166
Reference: [25] Sofonea, M., Tiba, D.: The control variational method for contact of Euler-Bernoulli beams.Bull. Trans. Univ. Braşov, Ser. III, Math. Inform. Phys. 2 (2009), 127-136. Zbl 1224.74088, MR 2642501
Reference: [26] Sysala, S.: Unilateral elastic subsoil of Winkler's type: Semi-coercive beam problem.Appl. Math., Praha 53 (2008), 347-379. Zbl 1199.49051, MR 2433726, 10.1007/s10492-008-0030-0
Reference: [27] Sysala, S.: Numerical modelling of semi-coercive beam problem with unilateral elastic subsoil of Winkler's type.Appl. Math., Praha 55 (2010), 151-187. Zbl 1224.74011, MR 2600940, 10.1007/s10492-010-0006-8
Reference: [28] Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications.Graduate Studies in Mathematics 112, American Mathematical Society, Providence (2010). Zbl 1195.49001, MR 2583281, 10.1090/gsm/112
.

Files

Files Size Format View
AplMat_62-2017-6_7.pdf 346.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo