Previous |  Up |  Next

Article

Title: On conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplacian (English)
Author: Vodstrčil, Petr
Author: Bouchala, Jiří
Author: Jarošová, Marta
Author: Dostál, Zdeněk
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 6
Year: 2017
Pages: 699-718
Summary lang: English
.
Category: math
.
Summary: Bounds on the spectrum of the Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients in the analysis of many domain decomposition methods. Here we are interested in the analysis of floating clusters, i.e. subdomains without prescribed Dirichlet conditions that are decomposed into still smaller subdomains glued on primal level in some nodes and/or by some averages. We give the estimates of the regular condition number of the Schur complements of the clusters arising in the discretization of problems governed by 2D Laplacian. The estimates depend on the decomposition and discretization parameters and gluing conditions. We also show how to plug the results into the analysis of H-TFETI methods and compare the estimates with numerical experiments. The results are useful for the analysis and implementation of powerful massively parallel scalable algorithms for the solution of variational inequalities. (English)
Keyword: two-level domain decomposition
Keyword: hybrid FETI
Keyword: Schur complement
Keyword: bounds on the spectrum
MSC: 34B16
MSC: 34C25
idZBL: Zbl 06861552
idMR: MR3745747
DOI: 10.21136/AM.2017.0193-17
.
Date available: 2018-01-02T13:47:19Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147004
.
Reference: [1] Brenner, S. C.: The condition number of the Schur complement in domain decomposition.Numer. Math. 83 (1999), 187-203. Zbl 0936.65141, MR 1712684, 10.1007/s002110050446
Reference: [2] Dostál, Z., Neto, F. A. M. Gomes, Santos, S. A.: Duality-based domain decomposition with natural coarse-space for variational inequalities.J. Comput. Appl. Math. 126 397-415 (2000). Zbl 0970.65074, MR 1806768, 10.1016/S0377-0427(99)00368-4
Reference: [3] Dostál, Z., Horák, D., Kučera, R.: Total FETI---an easier implementable variant of the FETI method for numerical solution of elliptic PDE.Commun. Numer. Methods Eng. 22 (2006), 1155-1162. Zbl 1107.65104, MR 2282408, 10.1002/cnm.881
Reference: [4] Dostál, Z., Kozubek, T., Sadowská, M., Vondrák, V.: Scalable Algorithms for Contact Problems.Advances in Mechanics and Mathematics 36, Springer, New York (2016). Zbl 06658822, MR 3586594, 10.1007/978-1-4939-6834-3
Reference: [5] Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method.Numer. Linear Algebra Appl. 7 (2000), 687-714. Zbl 1051.65119, MR 1802366, 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
Reference: [6] Farhat, C., Mandel, J., Roux, F.-X.: Optimal convergence properties of the FETI domain decomposition method.Comput. Methods Appl. Mech. Eng. 115 (1994), 365-385. MR 1285024, 10.1016/0045-7825(94)90068-X
Reference: [7] Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm.Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. Zbl 0758.65075, MR 3618550, 10.1002/nme.1620320604
Reference: [8] Farhat, C., Roux, F.-X.: An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems.SIAM J. Sci. Stat. Comput. 13 (1992), 379-396. Zbl 0746.65086, MR 1145192, 10.1137/0913020
Reference: [9] Klawonn, A., Rheinbach, O.: A hybrid approach to 3-level FETI.Proc. Appl. Math. Mech. 8 (2008), 10841-10843. 10.1002/pamm.200810841
Reference: [10] Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with an application to biomechanics.ZAMM, Z. Angew. Math. Mech. 90 (2010), 5-32. Zbl 1355.65169, MR 2603676, 10.1002/zamm.200900329
Reference: [11] Lee, J.: Two domain decomposition methods for auxiliary linear problems for a multibody variational inequality.SIAM J. Sci. Comput. 35 (2013), A1350--A1375. Zbl 1276.65037, MR 3055241, 10.1137/100783753
Reference: [12] Lukáš, D., Bouchala, J., Vodstrčil, P., Malý, L.: 2-dimensional primal domain decomposition theory in detail.Appl. Math., Praha 60 (2015), 265-283. Zbl 1363.65215, MR 3419962, 10.1007/s10492-015-0095-5
Reference: [13] Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems.Lecture Notes in Computational Science and Engineering 90, Springer, Berlin (2013). Zbl 1272.65100, MR 3013465, 10.1007/978-3-642-23588-7
Reference: [14] Toselli, A., Widlund, O. B.: Domain Decomposition Methods---Algorithms and Theory.Springer Series on Computational Mathematics 34, Springer, Berlin (2005). Zbl 1069.65138, MR 2104179
.

Files

Files Size Format View
AplMat_62-2017-6_9.pdf 371.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo