Previous |  Up |  Next

Article

Title: Low-rank tensor representation of Slater-type and Hydrogen-like orbitals (English)
Author: Mrovec, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 6
Year: 2017
Pages: 679-698
Summary lang: English
.
Category: math
.
Summary: The paper focuses on a low-rank tensor structured representation of Slater-type and Hydrogen-like orbital basis functions that can be used in electronic structure calculations. Standard packages use the Gaussian-type basis functions which allow us to analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital functions are physically more appropriate, but they are not analytically integrable. A numerical integration is too expensive when using the standard discretization techniques due the dimensionality of the problem. However, it can be effectively performed using the tensor representation of basis functions. Furthermore, this approach can take advantage of parallel computing. (English)
Keyword: Slater-type orbital
Keyword: Hydrogen-like orbital
Keyword: Gaussian-type orbital
Keyword: electronic structure
Keyword: tensor numerical methods
Keyword: sinc approximation
MSC: 15A69
MSC: 30E20
MSC: 33B15
MSC: 33C45
MSC: 33C55
MSC: 33F05
MSC: 41A05
MSC: 44A10
MSC: 65Z05
MSC: 81Q05
idZBL: Zbl 06861551
idMR: MR3745746
DOI: 10.21136/AM.2017.0177-17
.
Date available: 2018-01-02T13:46:52Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147003
.
Reference: [1] Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.National Bureau of Standards. A Wiley-Interscience Publication; John Willey, New York (1972). Zbl 0543.33001, MR 0167642
Reference: [2] Chisholm, C. D. H.: Group Theoretical Techniques in Quantum Chemistry.Academic Press, New York (1976).
Reference: [3] Fang, G.: Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error.J. Approximation Theory 85 (1996), 115-131. Zbl 0845.94003, MR 1385811, 10.1006/jath.1996.0033
Reference: [4] Hehre, W. J., Stewart, R. F., Pople, J. A.: Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals.J. Chem. Phys. 51 (1969), 2657-2664. 10.1063/1.1672392
Reference: [5] Khoromskaia, V., Khoromskij, B. N.: Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.Phys. Chem. Chem. Phys. 17 (2015), 31491-31509. 10.1039/C5CP01215E
Reference: [6] Khoromskaia, V., Khoromskij, B. N., Schneider, R.: Tensor-structured factorized calculation of two-electron integrals in a general basis.SIAM J. Sci. Comput. 35 (2013), A987--A1010. Zbl 1266.65069, MR 3040965, 10.1137/120884067
Reference: [7] Khoromskij, B. N.: Structured rank-$(R_1,\dots,R_D)$ decomposition of function-related tensors in $\mathbb R^D$.Comput. Methods Appl. Math. 6 (2006), 194-220. Zbl 1120.65052, MR 2280939, 10.2478/cmam-2006-0010
Reference: [8] Khoromskij, B. N.: Tensors-structured numerical methods in scientific computing: Survey on recent advances.Chemometrics and Intelligent Laboratory System 110 (2012), 1-19. 10.1016/j.chemolab.2011.09.001
Reference: [9] Khoromskij, B. N., Khoromskaia, V.: Low rank Tucker-type tensor approximation to classical potentials.Cent. Eur. J. Math. 5 (2007), 523-550. Zbl 1130.65060, MR 2322828, 10.2478/s11533-007-0018-0
Reference: [10] Khoromskij, B. N., Khoromskaia, V.: Multigrid accelerated tensor approximation of function related multidimensional arrays.SIAM J. Sci. Comput. 31 (2009), 3002-3026. Zbl 1197.65215, MR 2520309, 10.1137/080730408
Reference: [11] Lang, S.: Undergraduate Analysis.Undergraduate Texts in Mathematics, Springer, New York (1997). Zbl 0962.46001, MR 1476913, 10.1007/978-1-4757-2698-5
Reference: [12] Mrovec, M.: Tensor approximation of Slater-type orbital basis functions.Advances in Electrical and Electronic Engineering. (2017). 10.15598/aeee.v15i2.2235
Reference: [13] Saad, Y., Chelikowsky, J. R., Shontz, S. M.: Numerical methods for electronic structure calculations of materials.SIAM Rev. 52 (2010), 3-54. Zbl 1185.82004, MR 2639608, 10.1137/060651653
Reference: [14] Schiff, J. L.: The Laplace Transform: Theory and Applications.Undergraduate Texts in Mathematics, Springer, New York (1999). Zbl 0934.44001, MR 1716143, 10.1007/978-0-387-22757-3
Reference: [15] Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions.Springer Series in Computational Mathematics 20, Springer, New York (1993). Zbl 0803.65141, MR 1226236, 10.1007/978-1-4612-2706-9
Reference: [16] Stewart, R. F.: Small Gaussian expansions of atomic orbitals.J. Chem. Phys. 50 (1969), 2485-2495. 10.1063/1.1671406
.

Files

Files Size Format View
AplMat_62-2017-6_8.pdf 615.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo