Title:
|
Infinitesimal CR automorphisms for a class of polynomial models (English) |
Author:
|
Kolář, Martin |
Author:
|
Meylan, Francine |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
53 |
Issue:
|
5 |
Year:
|
2017 |
Pages:
|
255-265 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study infinitesimal CR automorphisms of Levi degenerate hypersurfaces. We illustrate the recent general results of [18], [17], [15], on a class of concrete examples, polynomial models in $\mathbb{C}^3$ of the form $\Im \; w = \Re (P(z) \overline{Q(z)}) $, where $P$ and $Q$ are weighted homogeneous holomorphic polynomials in $z = (z_1, z_2)$. We classify such models according to their Lie algebra of infinitesimal CR automorphisms. We also give the first example of a non monomial model which admits a nonlinear rigid automorphism. (English) |
Keyword:
|
Levi degenerate hypersurfaces |
Keyword:
|
finite multitype |
Keyword:
|
polynomial models |
Keyword:
|
infinitesimal CR automorphisms |
MSC:
|
32V35 |
MSC:
|
32V40 |
idZBL:
|
Zbl 06861557 |
idMR:
|
MR3746064 |
DOI:
|
10.5817/AM2017-5-255 |
. |
Date available:
|
2018-01-03T14:47:33Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147020 |
. |
Reference:
|
[1] Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Local geometric properties of real submanifolds in complex space.Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. MR 1754643, 10.1090/S0273-0979-00-00863-6 |
Reference:
|
[2] Bedford, E., Pinchuk, S.I.: Convex domains with noncompact groups of automorphisms.Mat. Sb. 185 (1994), 3–26. MR 1275970 |
Reference:
|
[3] Bloom, T., Graham, I.: On “type” conditions for generic real submanifolds of $C^{n}$.Invent. Math. 40 (3) (1977), 217–243. MR 0589930, 10.1007/BF01425740 |
Reference:
|
[4] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I.Ann. Math. Pura Appl. 11 (1932), 17–90. MR 1553196, 10.1007/BF02417822 |
Reference:
|
[5] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II.Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. MR 1556687 |
Reference:
|
[6] Catlin, D.: Boundary invariants of pseudoconvex domains.Ann. of Math. (2) 120 (1984), 529–586. Zbl 0583.32048, MR 0769163 |
Reference:
|
[7] Chern, S. S., Moser, J.: Real hypersurfaces in complex manifolds.Acta Math. 133 (1974), 219–271. MR 0425155, 10.1007/BF02392146 |
Reference:
|
[8] D’Angelo, J.: Orders od contact, real hypersurfaces and applications.Ann. of Math. (2) 115 (1982), 615–637. MR 0657241 |
Reference:
|
[9] Kim, S.Y., Zaitsev, D.: Equivalence and embedding problems for CR-structures of any codimension.Topology 44 (2005), 557–584. Zbl 1079.32022, MR 2122216, 10.1016/j.top.2004.11.004 |
Reference:
|
[10] Kohn, J.J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two.J. Differential Geom. 6 (1972), 523–542. MR 0322365, 10.4310/jdg/1214430641 |
Reference:
|
[11] Kolář, M.: Normal forms for hypersurfaces of finite type in $\mathbb{C}^2$.Math. Res. Lett. 12 (2005), 523–542. MR 2189248, 10.4310/MRL.2005.v12.n6.a10 |
Reference:
|
[12] Kolář, M.: The Catlin multitype and biholomorphic equivalence of models.Internat. Math. Res. Notices 18 (2010), 3530–3548. Zbl 1207.32032, MR 2725504, 10.1093/imrn/rnq013 |
Reference:
|
[13] Kolář, M., Kossovskiy, I., Zaitsev, D.: Normal forms in Cauchy-Riemann geometry.Analysis and geometry in several complex variables, vol. 681, Contemp. Math., 2017, pp. 153–177. Zbl 1362.32023, MR 3603888 |
Reference:
|
[14] Kolář, M., Lamel, B.: Ruled hypersurfaces in $\mathbb{C}^{2}$.J. Geom. Anal. 25 (2015), 1240–1281. Zbl 1322.32029, MR 3319970, 10.1007/s12220-013-9465-y |
Reference:
|
[15] Kolář, M., Meylan, F.: Nonlinear CR automorphisms of Levi degenerate hypersurfaces and a new gap phenomenon.arXiv : 1703.07123 [CV]. |
Reference:
|
[16] Kolář, M., Meylan, F.: Chern-Moser operators and weighted jet determination problems.Geometric analysis of several complex variables and related topics, vol. 550, Contemp. Math., 2011, pp. 75–88. Zbl 1232.32024, MR 2868555 |
Reference:
|
[17] Kolář, M., Meylan, F.: Higher order symmetries of real hypersurfaces in $\mathbb{C}^3$.Proc. Amer. Math. Soc. 144 (2016), 4807–4818. Zbl 1351.32057, MR 3544531, 10.1090/proc/13090 |
Reference:
|
[18] Kolář, M., Meylan, F., Zaitsev, D.: Chern-Moser operators and polynomial models in CR geometry.Adv. Math. 263 (2014), 321–356. Zbl 1294.32010, MR 3239141, 10.1016/j.aim.2014.06.017 |
Reference:
|
[19] Poincaré, H.: Les fonctions analytique de deux variables et la représentation conforme.Rend. Circ. Mat. Palermo 23 (1907), 185–220. 10.1007/BF03013518 |
Reference:
|
[20] Vitushkin, A.G.: Real analytic hypersurfaces in complex manifolds.Russian Math. Surveys 40 (1985), 1–35. Zbl 0588.32025, MR 0786085, 10.1070/RM1985v040n02ABEH003556 |
Reference:
|
[21] Webster, S.M.: On the Moser normal form at a non-umbilic point.Math. Ann. 233 (1978), 97–102. Zbl 0358.32013, MR 0486511, 10.1007/BF01421918 |
. |