Previous |  Up |  Next

Article

Title: On the homotopy transfer of $A_\infty$ structures (English)
Author: Kopřiva, Jakub
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 267-312
Summary lang: English
.
Category: math
.
Summary: The present article is devoted to the study of transfers for $A_\infty $ structures, their maps and homotopies, as developed in [7]. In particular, we supply the proofs of claims formulated therein and provide their extension by comparing them with the former approach based on the homological perturbation lemma. (English)
Keyword: $A_\infty $ structures
Keyword: transfer
Keyword: homological perturbation lemma
MSC: 18D10
MSC: 55S99
idZBL: Zbl 06861558
idMR: MR3746065
DOI: 10.5817/AM2017-5-267
.
Date available: 2018-01-03T14:48:31Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147021
.
Reference: [1] Crainic, M.: On the perturbation lemma, and deformations.2004, ArXiv preprint math.AT/0403266.
Reference: [2] Hatcher, A.: Algebraic topology.Cambridge University Press, Cambridge, New York, 2002. Zbl 1044.55001, MR 1867354
Reference: [3] Huebschmann, J.: On the construction of $A_\infty $-structures.Georgian Math. J. 17 (1) (2010), 161–202. Zbl 1202.55007, MR 2640649
Reference: [4] Keller, B.: Introduction to $A_\infty $ algebras and modules.Homology Homotopy Appl. 3 (1) (2001), 1–35. MR 1905779
Reference: [5] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry.(Seoul, 2000), World Sci. Publ., River Edge, NJ (2001), 203–263. MR 1882331
Reference: [6] Lefèvre-Hasegawa, K.: Sur les $A_\infty $ catégories.Ph.D. thesis, Université Paris 7 – Denis Diderot, 2003.
Reference: [7] Markl, M.: Transferring $A_\infty $ (strongly homotopy associative) structures.Rend. Circ. Mat. Palermo (2) Suppl. (2006), no. 79, 139–151. Zbl 1112.18007, MR 2287133
Reference: [8] Markl, M., Shnider, S., Stasheff, J.D.: Operads in Algebra, Topology and Physics.Mathematical Surveys and Monographs, American Mathematical Society, Providence, Rhode Island, 2002. Zbl 1017.18001, MR 1898414
Reference: [9] Merkulov, S.: Strongly Homotopy Algebras of a Kähler Manifold.Internat. Math. Res. Notices (1999), no. 3, 153–164. 10.1155/S1073792899000070
Reference: [10] Prouté, A.: $A_\infty $-structures: Modèles Minimaux de Baues-Lemaire et Kadeishvili et Homologie des Fibrations.Ph.D. thesis, Université Paris 7 – Denis Diderot, 1986.
Reference: [11] Weibel, C.A.: An introduction to homological algebra.Cambridge University Press, 1995. Zbl 0834.18001
.

Files

Files Size Format View
ArchMathRetro_053-2017-5_3.pdf 694.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo