Previous |  Up |  Next

Article

Keywords:
$(2, 3, 5)$-distributions; almost Einstein; BGG operators; conformal geometry; invariant differential operators
Summary:
For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname{G}_2, P)$ for a particular parabolic subgroup $P < \operatorname{G}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta_0$ associated to the $7$-dimensional irreducible representation of $\operatorname{G}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta_0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf{D}$ determines. We apply our formula for $\Theta_0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname{G}_2$.
References:
[1] An, D., Nurowski, P.: Twistor space for rolling bodies. Comm. Math. Phys. 326 (2014), 393–414, arXiv:1210.3536. DOI 10.1007/s00220-013-1839-2 | MR 3165459 | Zbl 1296.53100
[2] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (1994), 1191–1217, https://projecteuclid.org/euclid.rmjm/1181072333 DOI 10.1216/rmjm/1181072333 | MR 1322223 | Zbl 0828.53012
[3] Bor, G., Montgomery, R.: $G_2$ and the rolling distribution. Enseign. Math. 55 (2009), 157–196, arXiv:math/0612469. DOI 10.4171/LEM/55-1-8 | MR 2541507 | Zbl 1251.70008
[4] Bryant, R.: Developments of Cartan geometry and related mathematical problems. RIMS Symposium Proceedings, vol. 1502, Kyoto University, 2006, pp. 1–15.
[5] Bryant, R., Hsu, L.: Rigidity of integral curves of rank two distributions. Invent. Math. 114 (1993), 435–461. DOI 10.1007/BF01232676 | MR 1240644
[6] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. MR 1856258 | Zbl 0985.58002
[7] Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries. J. Reine Angew. Math. 582 (2005), 143–172, arXiv:math/0102097. DOI 10.1515/crll.2005.2005.582.143 | MR 2139714 | Zbl 1075.53022
[8] Čap, A., Sagerschnig, K.: On Nurowski’s conformal structure associated to a generic rank two distribution in dimension five. J. Geom. Phys. 59 (2009), 901–912, arXiv:0710.2208. DOI 10.1016/j.geomphys.2009.04.001 | MR 2536853 | Zbl 1172.53014
[9] Čap, A., Slovák, J.: Weyl structures for parabolic geometries. Math. Scand. 93 (2003), 53–90, arXiv:math/0001166. DOI 10.7146/math.scand.a-14413 | MR 1997873 | Zbl 1076.53029
[10] Čap, A., Slovák, J.: Parabolic geometries I: Background and general theory. Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009, pp. x+628pp. MR 2532439 | Zbl 1183.53002
[11] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand Sequences. Ann. Math. (2) 154 (2001), 97–113, arXiv:math/0001164. MR 1847589 | Zbl 1159.58309
[12] Cartan, É.: Les systèmes de Pfaff a cinq variables et les équations aux derivés partielles du second ordre. Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192. DOI 10.24033/asens.618 | MR 1509120
[13] Doubrov, B., Govorov, A.:
[14] Goursat, É.: Leçons sur le problème de Pfaff. Librairie Scientifique J. Hermann, Paris, 1922.
[15] Gover, A.R., Panai, R., Willse, T.: Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy. to appear. 57pp. arXiv:1403.1959. MR 3689335
[16] Graham, C.R., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$. J. Differential Geom. 92 (2012), 463–506, arXiv:1109.3504. DOI 10.4310/jdg/1354110197 | MR 3005060 | Zbl 1268.53075
[17] Hammerl, M., Sagerschnig, K.: Conformal structures associated to generic rank 2 distributions on 5-manifolds — Characterization and Killing-field decomposition. SIGMA 5 (2009), arXiv:0908.0483. MR 2529166 | Zbl 1191.53016
[18] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. (JEMS) 14 (2012), 1859–1883, arXiv:1003.6090. DOI 10.4171/JEMS/349 | MR 2984590 | Zbl 1264.58029
[19] Leistner, T., Nurowski, P.: Conformal structures with $G_{2(2)}$-ambient metrics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (2012), 407–436, arXiv:0904.0186. MR 3011997
[20] Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55 (2005), 19–49, arXiv:math/0406400. MR 2157414 | Zbl 1082.53024
[21] Sagerschnig, K.: Split octonions and generic rank two distributions in dimension five. Arch. Math. (Brno) 42 (Supplement) (2006), 329–339. MR 2322419 | Zbl 1164.53362
[22] Sagerschnig, K.: Weyl structures for generic rank two distributions in dimension five. Ph.D. thesis, Universität Wien, 2008.
[23] Sagerschnig, K., Willse, T.: The geometry of almost Einstein $(2, 3, 5)$ distributions. SIGMA 13 (2017), 56pp., arXiv:1606.01069. MR 3598788 | Zbl 1372.32033
[24] Westbury, B.: Sextonions and the magic square. J. London Math. Soc. 73 (2006), 455–474, arXiv:math/0411428. DOI 10.1112/S0024610706022605 | MR 2225497 | Zbl 1154.17304
[25] Willse, T.: Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy. Differential Geom. Appl. 33 (2014), 81–111, arXiv:1302.7163. DOI 10.1016/j.difgeo.2013.10.010 | MR 3159952 | Zbl 1293.53040
[26] Zelenko, I.: On variational approach to differential invariants of rank two distributions. Differential Geom. Appl. 24 (2006), 235–259, arXiv:math/040217. DOI 10.1016/j.difgeo.2005.09.004 | MR 2216939 | Zbl 1091.58002
Partner of
EuDML logo