Previous |  Up |  Next

Article

Title: The almost Einstein operator for $(2, 3, 5)$ distributions (English)
Author: Sagerschnig, Katja
Author: Willse, Travis
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 347-370
Summary lang: English
.
Category: math
.
Summary: For the geometry of oriented $(2, 3, 5)$ distributions $(M, )$, which correspond to regular, normal parabolic geometries of type $(\operatorname{G}_2, P)$ for a particular parabolic subgroup $P < \operatorname{G}_2$, we develop the corresponding tractor calculus and use it to analyze the first BGG operator $\Theta_0$ associated to the $7$-dimensional irreducible representation of $\operatorname{G}_2$. We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator are automatically normal, yielding a geometric interpretation of $\ker \Theta_0$: For any $(M, )$, this kernel consists precisely of the almost Einstein scales of the Nurowski conformal structure on $M$ that $\mathbf{D}$ determines. We apply our formula for $\Theta_0$ (1) to recover efficiently some known solutions, (2) to construct a distribution with root type $[3, 1]$ with a nonzero solution, and (3) to show efficiently that the conformal holonomy of a particular $(2, 3, 5)$ conformal structure is equal to $\operatorname{G}_2$. (English)
Keyword: $(2, 3, 5)$-distributions
Keyword: almost Einstein
Keyword: BGG operators
Keyword: conformal geometry
Keyword: invariant differential operators
MSC: 53A30
MSC: 53A40
MSC: 53C25
MSC: 58A30
MSC: 58J60
idZBL: Zbl 06861562
idMR: MR3746069
DOI: 10.5817/AM2017-5-347
.
Date available: 2018-01-03T14:54:40Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147025
.
Reference: [1] An, D., Nurowski, P.: Twistor space for rolling bodies.Comm. Math. Phys. 326 (2014), 393–414, arXiv:1210.3536. Zbl 1296.53100, MR 3165459, 10.1007/s00220-013-1839-2
Reference: [2] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures.Rocky Mountain J. Math. 24 (1994), 1191–1217, https://projecteuclid.org/euclid.rmjm/1181072333. Zbl 0828.53012, MR 1322223, 10.1216/rmjm/1181072333
Reference: [3] Bor, G., Montgomery, R.: $G_2$ and the rolling distribution.Enseign. Math. 55 (2009), 157–196, arXiv:math/0612469. Zbl 1251.70008, MR 2541507, 10.4171/LEM/55-1-8
Reference: [4] Bryant, R.: Developments of Cartan geometry and related mathematical problems.RIMS Symposium Proceedings, vol. 1502, Kyoto University, 2006, pp. 1–15.
Reference: [5] Bryant, R., Hsu, L.: Rigidity of integral curves of rank two distributions.Invent. Math. 114 (1993), 435–461. MR 1240644, 10.1007/BF01232676
Reference: [6] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences.J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. Zbl 0985.58002, MR 1856258
Reference: [7] Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries.J. Reine Angew. Math. 582 (2005), 143–172, arXiv:math/0102097. Zbl 1075.53022, MR 2139714, 10.1515/crll.2005.2005.582.143
Reference: [8] Čap, A., Sagerschnig, K.: On Nurowski’s conformal structure associated to a generic rank two distribution in dimension five.J. Geom. Phys. 59 (2009), 901–912, arXiv:0710.2208. Zbl 1172.53014, MR 2536853, 10.1016/j.geomphys.2009.04.001
Reference: [9] Čap, A., Slovák, J.: Weyl structures for parabolic geometries.Math. Scand. 93 (2003), 53–90, arXiv:math/0001166. Zbl 1076.53029, MR 1997873, 10.7146/math.scand.a-14413
Reference: [10] Čap, A., Slovák, J.: Parabolic geometries I: Background and general theory.Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009, pp. x+628pp. Zbl 1183.53002, MR 2532439
Reference: [11] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand Sequences.Ann. Math. (2) 154 (2001), 97–113, arXiv:math/0001164. Zbl 1159.58309, MR 1847589
Reference: [12] Cartan, É.: Les systèmes de Pfaff a cinq variables et les équations aux derivés partielles du second ordre.Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192. MR 1509120, 10.24033/asens.618
Reference: [13] Doubrov, B., Govorov, A.: .
Reference: [14] Goursat, É.: Leçons sur le problème de Pfaff.Librairie Scientifique J. Hermann, Paris, 1922.
Reference: [15] Gover, A.R., Panai, R., Willse, T.: Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy.to appear. 57pp. arXiv:1403.1959. MR 3689335
Reference: [16] Graham, C.R., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$.J. Differential Geom. 92 (2012), 463–506, arXiv:1109.3504. Zbl 1268.53075, MR 3005060, 10.4310/jdg/1354110197
Reference: [17] Hammerl, M., Sagerschnig, K.: Conformal structures associated to generic rank 2 distributions on 5-manifolds — Characterization and Killing-field decomposition.SIGMA 5 (2009), arXiv:0908.0483. Zbl 1191.53016, MR 2529166
Reference: [18] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives.J. Eur. Math. Soc. (JEMS) 14 (2012), 1859–1883, arXiv:1003.6090. Zbl 1264.58029, MR 2984590, 10.4171/JEMS/349
Reference: [19] Leistner, T., Nurowski, P.: Conformal structures with $G_{2(2)}$-ambient metrics.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (2012), 407–436, arXiv:0904.0186. MR 3011997
Reference: [20] Nurowski, P.: Differential equations and conformal structures.J. Geom. Phys. 55 (2005), 19–49, arXiv:math/0406400. Zbl 1082.53024, MR 2157414
Reference: [21] Sagerschnig, K.: Split octonions and generic rank two distributions in dimension five.Arch. Math. (Brno) 42 (Supplement) (2006), 329–339. Zbl 1164.53362, MR 2322419
Reference: [22] Sagerschnig, K.: Weyl structures for generic rank two distributions in dimension five.Ph.D. thesis, Universität Wien, 2008.
Reference: [23] Sagerschnig, K., Willse, T.: The geometry of almost Einstein $(2, 3, 5)$ distributions.SIGMA 13 (2017), 56pp., arXiv:1606.01069. Zbl 1372.32033, MR 3598788
Reference: [24] Westbury, B.: Sextonions and the magic square.J. London Math. Soc. 73 (2006), 455–474, arXiv:math/0411428. Zbl 1154.17304, MR 2225497, 10.1112/S0024610706022605
Reference: [25] Willse, T.: Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy.Differential Geom. Appl. 33 (2014), 81–111, arXiv:1302.7163. Zbl 1293.53040, MR 3159952, 10.1016/j.difgeo.2013.10.010
Reference: [26] Zelenko, I.: On variational approach to differential invariants of rank two distributions.Differential Geom. Appl. 24 (2006), 235–259, arXiv:math/040217. Zbl 1091.58002, MR 2216939, 10.1016/j.difgeo.2005.09.004
.

Files

Files Size Format View
ArchMathRetro_053-2017-5_7.pdf 793.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo