Previous |  Up |  Next

Article

Title: Oscillation and Periodicity of a Second Order Impulsive Delay Differential Equation with a Piecewise Constant Argument (English)
Author: Oztepe, Gizem S.
Author: Karakoc, Fatma
Author: Bereketoglu, Huseyin
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 2
Year: 2017
Pages: 89-98
Summary lang: English
.
Category: math
.
Summary: This paper concerns with the existence of the solutions of a second order impulsive delay differential equation with a piecewise constant argument. Moreover, oscillation, nonoscillation and periodicity of the solutions are investigated. (English)
Keyword: Oscillation
Keyword: periodicity
Keyword: piecewise continuous argument
Keyword: impulsive differential equations.
MSC: 34K06
MSC: 34K11
MSC: 34K13
MSC: 34K45
idZBL: Zbl 1391.34105
idMR: MR3745431
.
Date available: 2018-02-05T14:38:53Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147060
.
Reference: [1] Akhmet, M.: Nonlinear hybrid continuous/discrete-time models..2011, Springer Science & Business Media. Zbl 1328.93001, MR 2883822
Reference: [2] Bereketoglu, H., Oztepe, G.S.: Convergence of the solution of an impulsive differential equation with piecewise constant arguments.Miskolc Math. Notes, 14, 2013, 801-815, Zbl 1299.34247, MR 3153966, 10.18514/MMN.2013.595
Reference: [3] Bereketoglu, H., Oztepe, G.S.: Asymptotic constancy for impulsive differential equations with piecewise constant argument.Bull. Math. Soc. Sci. Math. Roumanie Tome, 57, 2014, 181-192, MR 3236647
Reference: [4] Bereketoglu, H., Seyhan, G., Ogun, A.: Advanced impulsive differential equations with piecewise constant arguments.Math. Model. Anal, 15, 2, 2010, 175-187, Zbl 1218.34095, MR 2604207, 10.3846/1392-6292.2010.15.175-187
Reference: [5] Bereketoglu, H., Seyhan, G., Karakoc, F.: On a second order differential equation with piecewise constant mixed arguments.Carpath. J. Math, 27, 1, 2011, 1-12, Zbl 1265.34272, MR 2848121
Reference: [6] Busenberg, S., Cooke, K.: Vertically Transmitted Diseases, Models and Dynamics.Biomathematics, 23, 1993, Springer, Berlin, Zbl 0837.92021, MR 1206227
Reference: [7] Chen, C.H., Li, H.X.: Almost automorphy for bounded solutions to second-order neutral differential equations with piecewise constant arguments.Elect. J. Diff. Eq., 140, 2013, 1-16, Zbl 1292.34076, MR 3084620
Reference: [8] Gouzé, J.L., Sari, T.: A class of piecewise linear differential equations arising in biological models.Dynamic. Syst., 17, 4, 2002, 299-316, Zbl 1054.34013, MR 1975116, 10.1080/1468936021000041681
Reference: [9] Karakoc, F., Bereketoglu, H., Seyhan, G.: Oscillatory and periodic solutions of impulsive differential equations with piecewise constant argument.Acta Appl. Math., 110, 1, 2010, 499-510, Zbl 1196.34104, MR 2601669, 10.1007/s10440-009-9458-9
Reference: [10] Küpper, T., Yuan, R.: On quasi-periodic solutions of differential equations with piecewise constant argument.J. Math. Anal. Appl., 267, 1, 2002, 173-193, Zbl 1008.34063, MR 1886823, 10.1006/jmaa.2001.7761
Reference: [11] Li, J., Shen, J.: Periodic boundary value problems of impulsive differential equations with piecewise constant argument.J. Nat. Sci. Hunan Norm. Univ., 25, 2002, 5-9, Zbl 1047.34076, MR 1939990
Reference: [12] Li, H.X.: Almost periodic solutions of second-order neutral delay -- differential equations with piecewise constant arguments.J. Math. Anal. Appl., 298, 2, 2004, 693-709, Zbl 1064.34056, MR 2086984, 10.1016/j.jmaa.2004.05.034
Reference: [13] Nieto, J.J., Lopez, R.R.: Green's function for second-order periodic boundary value problems with piecewise constant arguments.J. Math. Anal. Appl., 304, 1, 2005, 33-57, Zbl 1078.34046, MR 2124647, 10.1016/j.jmaa.2004.09.023
Reference: [14] Oztepe, G.S., Bereketoglu, H.: Convergence in an impulsive advanced differential equations with piecewise constant argument.Bull. Math. Anal. Appl., 4, 2012, 57-70, Zbl 1314.34150, MR 2989710
Reference: [15] Seifert, G.: Second order scalar functional differential equations with piecewise constant arguments.J. Difference Equ. Appl., 8, 5, 2002, 427-445, Zbl 1010.34069, MR 1897067
Reference: [16] Wang, G.Q., Cheng, S.S.: Existence of periodic solutions for second order Rayleigh equations with piecewise constant argument.Turkish J. Math., 30, 1, 2006, 57-74, Zbl 1103.34064, MR 2215507
Reference: [17] Wiener, J.: Generalized solutions of functional differential equations.1993, Singapore, World Scientific, Zbl 0874.34054
Reference: [18] Wiener, J., Lakshmikantham, V.: Excitability of a second-order delay differential equation.Nonlinear Anal., 38, 1, 1999, 1-11, Zbl 0945.34048, MR 1692949, 10.1016/S0362-546X(98)00245-4
Reference: [19] Wiener, J., Lakshmikantham, V.: Differential equations with piecewise constant argument and impulsive equations.Nonlinear Studies, 7, 1, 2000, 60-69, Zbl 0997.34076, MR 1856579
Reference: [20] Yuan, R.: Pseudo-almost periodic solutions of second-order neutral delay differential equations with piecewise constant argument.Nonlinear Anal., 41, 7, 2000, 871-890, Zbl 1024.34068, MR 1764025, 10.1016/S0362-546X(98)00316-2
.

Files

Files Size Format View
ActaOstrav_25-2017-2_2.pdf 372.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo