Previous |  Up |  Next

Article

Title: Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups (English)
Author: Biggs, Rory
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 2
Year: 2017
Pages: 99-135
Summary lang: English
.
Category: math
.
Summary: We investigate the isometry groups of the left-invariant Riemannian and sub-Riemannian structures on simply connected three-dimensional Lie groups. More specifically, we determine the isometry group for each normalized structure and hence characterize for exactly which structures (and groups) the isotropy subgroup of the identity is contained in the group of automorphisms of the Lie group. It turns out (in both the Riemannian and sub-Riemannian cases) that for most structures any isometry is the composition of a left translation and a Lie group automorphism. (English)
Keyword: Riemannian structures
Keyword: sub-Riemannian structures
Keyword: three-dimensional Lie groups
MSC: 22E30
MSC: 53C17
MSC: 53C20
idZBL: Zbl 1395.53034
idMR: MR3745432
.
Date available: 2018-02-05T14:40:57Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147061
.
Reference: [1] Agrachev, A., Barilari, D.: Sub-Riemannian structures on 3D Lie groups.J. Dyn. Control Syst., 18, 1, 2012, 21-44, Zbl 1244.53039, MR 2902707, 10.1007/s10883-012-9133-8
Reference: [2] Alekseevskiĭ, D.V.: The conjugacy of polar decompositions of Lie groups.Mat. Sb. (N.S.), 84, 126, 1971, 14-26, MR 0277662
Reference: [3] Alekseevskiĭ, D.V.: Homogeneous Riemannian spaces of negative curvature.Mat. Sb. (N.S.), 138, 1, 1975, 93-117, MR 0362145
Reference: [4] Bellaïche, A.: The tangent space in sub-Riemannian geometry.A. Bellaïche, J.J. Risler (eds.), Sub-Riemannian geometry, 1996, 1-78, Birkhäuser, Basel, Zbl 0862.53031, MR 1421822
Reference: [5] Biggs, R., Nagy, P. T.: On Sub-Riemannian and Riemannian structures on the Heisenberg groups.J. Dyn. Control Syst., 22, 3, 2016, 563-594, Zbl 1347.53029, MR 3517618, 10.1007/s10883-016-9316-9
Reference: [6] Biggs, R., Remsing, C.C.: On the classification of real four-dimensional Lie groups.J. Lie Theory, 26, 4, 2016, 1001-1035, Zbl 1356.22008, MR 3487553
Reference: [7] Biggs, R., Remsing, C.C.: Quadratic Hamilton--Poisson systems in three dimensions: equivalence, stability, and integration.Acta Appl. Math., 148, 2017, 1-59, MR 3621290, 10.1007/s10440-016-0074-1
Reference: [8] Biggs, R., Remsing, C.C.: Invariant control systems on Lie groups.G. Falcone (ed.), Lie groups, differential equations, and geometry: advances and surveys, 2017, 127-181, Springer, MR 3726533
Reference: [9] Capogna, L., Donne, E. Le: Smoothness of subRiemannian isometries.Amer. J. Math., 138, 5, 2016, 1439-1454, Zbl 1370.53030, MR 3553396, 10.1353/ajm.2016.0043
Reference: [10] Gordon, C.: Riemannian isometry groups containing transitive reductive subgroups.Math. Ann., 248, 2, 1980, 185-192, Zbl 0412.53026, MR 0573347, 10.1007/BF01421956
Reference: [11] Gordon, C.S., Wilson, E.N.: Isometry groups of Riemannian solvmanifolds.Trans. Amer. Math. Soc., 307, 1, 1988, 245-269, Zbl 0664.53022, MR 0936815, 10.1090/S0002-9947-1988-0936815-X
Reference: [12] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups.Math. Nachr., 282, 6, 2009, 868-898, Zbl 1172.22006, MR 2530885, 10.1002/mana.200610777
Reference: [13] Ha, K.Y., Lee, J.B.: The isometry groups of simply connected 3-dimensional unimodular Lie groups.J. Geom. Phys., 62, 2, 2012, 189-203, Zbl 1247.22012, MR 2864471, 10.1016/j.geomphys.2011.10.011
Reference: [14] Hamenst{ä}dt, U.: Some regularity theorems for Carnot-Carathéodory metrics.J. Differential Geom., 32, 3, 1990, 819-850, Zbl 0687.53041, MR 1078163, 10.4310/jdg/1214445536
Reference: [15] Jurdjevic, V.: Geometric control theory.1997, Cambridge University Press, Cambridge, Zbl 0940.93005, MR 1425878
Reference: [16] Kishimoto, I.: Geodesics and isometries of Carnot groups.J. Math. Kyoto Univ., 43, 3, 2003, 509-522, Zbl 1060.53039, MR 2028665, 10.1215/kjm/1250283693
Reference: [17] Kivioja, V., Donne, E. Le: Isometries of nilpotent metric groups.J. Éc. Polytech. Math., 4, 2017, 473-482, Zbl 1369.22006, MR 3646026, 10.5802/jep.48
Reference: [18] Krasiński, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W.: The Bianchi classification in the Schücking-{B}ehr approach.Gen. Relativity Gravitation, 35, 3, 2003, 475-489, Zbl 1016.83004, MR 1964375, 10.1023/A:1022382202778
Reference: [19] Donne, E. Le, Ottazzi, A.: Isometries of Carnot groups and sub-Finsler homogeneous manifolds.J. Geom. Anal., 26, 1, 2016, 330-345, Zbl 1343.53029, MR 3441517, 10.1007/s12220-014-9552-8
Reference: [20] Milnor, J.: Curvatures of left invariant metrics on Lie groups.Advances in Math., 21, 3, 1976, 293-329, Zbl 0341.53030, MR 0425012
Reference: [21] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications.2002, American Mathematical Society, Providence, RI, Zbl 1044.53022, MR 1867362
Reference: [22] Mubarakzyanov, G.M.: On solvable Lie algebras.Izv. Vysš. Učehn. Zaved. Matematika, 1963, 114-123, In Russian. Zbl 0166.04104, MR 0153714
Reference: [23] Patrangenaru, V.: Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples.Pacific J. Math., 173, 2, 1996, 511-532, Zbl 0866.53035, MR 1394403, 10.2140/pjm.1996.173.511
Reference: [24] Petersen, P.: Riemannian geometry.2006, Springer, New York, 2nd ed.. Zbl 1220.53002, MR 2243772
Reference: [25] Shin, J.: Isometry groups of unimodular simply connected 3-dimensional Lie groups.Geom. Dedicata, 65, 3, 1997, 267-290, Zbl 0909.53036, MR 1451979, 10.1023/A:1004957320982
Reference: [26] {Š}nobl, L., Winternitz, P.: Classification and identification of Lie algebras.2014, American Mathematical Society, Providence, RI, Zbl 1331.17001, MR 3184730
Reference: [27] Strichartz, R.S.: Sub-Riemannian geometry.J. Differential Geom., 24, 2, 1986, 221-263, Zbl 0609.53021, MR 0862049, 10.4310/jdg/1214440436
Reference: [28] Vershik, A.M., Gershkovich, V.Y.: Nonholonomic dynamical systems, geometry of distributions and variational problems.V.I. Arnol'd, S.P. Novikov (eds.), Dynamical systems VII, 1994, pp. 1-81, Springer, Berlin, MR 0922070
Reference: [29] Wilson, E.N.: Isometry groups on homogeneous nilmanifolds.Geom. Dedicata, 12, 3, 1982, 337-346, Zbl 0489.53045, MR 0661539, 10.1007/BF00147318
.

Files

Files Size Format View
ActaOstrav_25-2017-2_3.pdf 1.287Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo