Previous |  Up |  Next

Article

Title: Convolution of second order linear recursive sequences II. (English)
Author: Szakács, Tamás
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 2
Year: 2017
Pages: 137-148
Summary lang: English
.
Category: math
.
Summary: We continue the investigation of convolutions of second order linear recursive sequences (see the first part in [1]). In this paper, we focus on the case when the characteristic polynomials of the sequences have common root. (English)
Keyword: Convolution
Keyword: generating function
Keyword: linear recurrence sequences
Keyword: Fibonacci sequence.
MSC: 11B37
MSC: 11B39
idZBL: Zbl 06888204
idMR: MR3745433
.
Date available: 2018-02-05T14:41:44Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147062
.
Reference: [1] Szakács, T.: Convolution of second order linear recursive sequences I..Annales Mathematicae et Informaticae, 46, 2016, 205-216, Zbl 1374.11026, MR 3607013
Reference: [2] Griffiths, M., Bramham, A.: The Jacobsthal numbers: Two results and two questions.The Fibonacci Quarterly, 53, 2, 2015, 147-151, MR 3353492
Reference: [3] Inc., OEIS Foundation: The On-Line Encyclopedia of Integer Sequences.2011, http://oeis.org.
Reference: [4] Zhang, Z., He, P.: The Multiple Sum on the Generalized Lucas Sequences.The Fibonacci Quarterly, 40, 2, 2002, 124-127, Zbl 1039.11003, MR 1902748
Reference: [5] Zhang, W.: Some Identities Involving the Fibonacci Numbers.The Fibonacci Quarterly, 35, 3, 1997, 225-229, Zbl 0880.11018, MR 1465835
Reference: [6] Vajda, S.: Fibonacci & Lucas numbers, and the golden section.Ellis Horwood Books In Mathematics And Its Application, 1989, Zbl 0695.10001, MR 1015938
Reference: [7] Jones, J.P., Kiss, P.: Linear recursive sequences and power series.Publ. Math. Debrecen, 41, 1992, 295-306, Zbl 0769.11007, MR 1189111
.

Files

Files Size Format View
ActaOstrav_25-2017-2_4.pdf 339.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo