Previous |  Up |  Next

Article

Title: Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface (English)
Author: Klimeš, Lubomír
Author: Popela, Pavel
Author: Mauder, Tomáš
Author: Štětina, Josef
Author: Charvát, Pavel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 6
Year: 2017
Pages: 1047-1070
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well. (English)
Keyword: stochastic programming
Keyword: progressive hedging
Keyword: parallel computing
Keyword: steel production
Keyword: heat transfer
Keyword: phase change
MSC: 49M27
MSC: 80A20
MSC: 80A22
MSC: 90C06
MSC: 90C15
MSC: 93C20
idZBL: Zbl 06861640
idMR: MR3758934
DOI: 10.14736/kyb-2017-6-1047
.
Date available: 2018-02-26T11:27:50Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147084
.
Reference: [1] Alquarashi, A., Etemadi, A. H., Khodaei, A.: Treatment of uncertainty for next generation power systems: State-of-the-art in stochastic optimization..Electr. Power Syst. Res. 141 (2016), 233-245. 10.1016/j.epsr.2016.08.009
Reference: [2] Barttfeld, M., Alleborn, N., Durst, F.: Dynamic optimization of multiple-zone air impingement drying process..Comput. Chem. Engrg. 30 (2006), 467-489. 10.1016/j.compchemeng.2005.10.016
Reference: [3] Birge, J. R., Louveaux, F.: Introduction to Stochastic Programming..Springer, New York 2011. MR 2807730
Reference: [4] Brimacombe, J. K., Sorimachi, K.: Crack formation in continuous-casting of steel..Metal. Trans. B. Proc. Metal. 8 (1977), 489-505. 10.1007/bf02696937
Reference: [5] Carvalho, E. P., Martínez, J., Martínez, J. M., Pisnitchenko, F.: On optimization strategies for parameter estimation in models governed by partial differential equations..Math. Comput. Simul. 114 (2015), 14-24. MR 3357814, 10.1016/j.matcom.2010.07.020
Reference: [6] Carrasco, M., Ivorra, B., Ramos, A. M.: Stochastic topology design optimization for continuous elastic materials..Comput. Meth. Appl. Mech. Engrg. 289 (2015), 131-154. MR 3327148, 10.1016/j.cma.2015.02.003
Reference: [7] Carpentier, P. L., Gendreau, M., Bastin, F.: Long-term management of a hydroelectric multireservoir system under uncertainty using the progressive hedging algorithm..Water Resour. Res. 49 (2013), 2812-2827. 10.1002/wrcr.20254
Reference: [8] Cheng, Y. M., Li, D. Z., Li, N., Lee, Y. Y., Au, S. K.: Solution of some engineering partial differential equations governed by the minimal of a functional by global optimization method..J. Mech. 29 (2013), 507-516. 10.1017/jmech.2013.26
Reference: [9] Drud, A.: CONOPT - A GRG code for large sparse dynamic nonlinear optimization problems..Math. Program. 31 (1985), 153-191. MR 0777289, 10.1007/bf02591747
Reference: [10] Gade, D., Ryan, G. Hackebeil. S. M., Watson, J.-P., Wets, R. J.-B., Woodruff, D. L.: Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs..Math. Prog. 157 (2016), 47-67. MR 3492067, 10.1007/s10107-016-1000-z
Reference: [11] Gonçalves, R. E. C., Finardi, E. C., Silva, E. L. da: Applying different decomposition schemes using the progressive hedging algorithm to the operation planning problem of a hydrothermal system..Electr. Power Syst. Res. 83 (2012), 19-27. 10.1016/j.epsr.2011.09.006
Reference: [12] Gul, S., Denton, B. T., Fowler, J. W.: A progressive hedging approach for surgery planning under uncertainty..INFORMS J. Comput. 27 (2015), 755-772. MR 3432659, 10.1287/ijoc.2015.0658
Reference: [13] Ikeda, S., Ooka, R.: A new optimization strategy for the operating schedule of energy systems under uncertainty of renewable energy sources and demand changes..Energ. Build. 125 (2016), 75-85. 10.1016/j.enbuild.2016.04.080
Reference: [14] Bergman, T. L., Lavine, A. S., Incropera, F. P., Dewitt, D. P.: Fundamentals of Heat and Mass Transfer. Seventh edition..Wiley, New York 2011.
Reference: [15] Klimeš, L.: Stochastic Programming Algorithms..Master Thesis. Brno University of Technology, 2010.
Reference: [16] Klimeš, L., Popela, P.: An implementation of progressive hedging algorithm for engineering problem..In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 459-464.
Reference: [17] Klimeš, L., Popela, P., Štětina, J.: Decomposition approach applied to stochastic optimization of continuous steel casting..In: Proc. 17th International Conference on Soft Computing MENDEL, Brno 2011, pp. 314-319.
Reference: [18] Klimeš, L., Mauder, T., Štětina, J.: Stochastic approach and optimal control of continuous steel casting process by using progressive hedging algorithm..In: Proc. 20th International Conference on Materials and Metallurgy METAL, Brno 2011, pp. 146-151.
Reference: [19] Marca, M. La, Armbruster, D., Herty, M., Ringhofer, C.: Control of continuum models of production systems..IEEE Trans. Automat. Control 55 (2010), 2511-2526. MR 2721893, 10.1109/tac.2010.2046925
Reference: [20] Lamghari, A., Dimitrakopoulos, R.: Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty..Eur. J. Oper. Res. 253 (2016), 843-855. MR 3490823, 10.1016/j.ejor.2016.03.007
Reference: [21] Liu, J., Liu, C.: Optimization of mold inverse oscillation control parameters in continuous casting process..Mater. Manuf. Process. 30 (2015), 563-568. 10.1080/10426914.2015.1004696
Reference: [22] Mills, K. C., Ramirez-Lopez, P., Lee, P. D., Santillana, B., Thomas, B. G., Morales, R.: Looking into continuous casting mould..Ironmak. Steelmak. 41 (2014), 242-249. 10.1179/0301923313z.000000000255
Reference: [23] Mauder, T., Kavička, F., Štětina, J., Franěk, Z., Masarik, M.: A mathematical & stochatic modelling of the concasting of steel slabs..In: Proc. International Conference on Materials and Metallurgy, Hradec nad Moravicí 2009, pp. 41-48.
Reference: [24] Mauder, T., Novotný, J.: Two mathematical approaches for optimal control of the continuous slab casting process..In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 41-48.
Reference: [25] Rockafellar, R. T., Wets, R. J.-B.: Scenarios and policy aggregation in optimization under uncertainty..Math. Oper. Res. 16 (1991), 119-147. MR 1106793, 10.1287/moor.16.1.119
Reference: [26] Ruszczynski, A., Shapiro, A.: Stochastic Programming Models..Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, Elsevier, Amsterdam 2003. MR 2051791, 10.1016/s0927-0507(03)10001-1
Reference: [27] Shioura, A., Shakhlevich, N. V., Strusevich, V. A.: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines..INFORMS J. Comput. 28 (2016), 148-161. MR 3461551, 10.1287/ijoc.2015.0660
Reference: [28] Stefanescu, D. M.: Science and Engineering of Casting Solidification. Second edition..Springer, New York 2009.
Reference: [29] Štětina, J., Klimeš, L., Mauder, T.: Minimization of surface defects by increasing the surface temperature during the straightening of a continuously cast slab..Mater. Tehnol. 47 (2013), 311-316.
Reference: [30] Ugail, H., Wilson, M. J.: Efficient shape parametrisation for automatic design optimisation using a partial differential equation formulation..Comput. Struct. 81 (2003), 2601-2609. 10.1016/s0045-7949(03)00321-3
Reference: [31] Varaiya, P., Wets, R. J.-B.: Stochastic dynamic optimization approaches and computation..In: Proc. 13th International Symposium on Mathematical Programming, Tokio 1989, pp. 309-331. MR 1114320, 10.1007/978-3-642-82450-0_11
Reference: [32] Veliz, F. B., Watson, J. P., Weintraub, A., Wets, R. J.-B., Woodruff, D. L.: Stochastic optimization models in forest planning: a progressive hedging solution approach..Ann. Oper. Res. 232 (2015), 259-274. MR 3383965, 10.1007/s10479-014-1608-4
Reference: [33] Waanders, B. G. V., Carnes, B. R.: Optimization under adaptive error control for finite element based simulations..Comput. Mech. 47 (2011), 49-63. MR 2756370, 10.1007/s00466-010-0530-0
Reference: [34] Wets, R. J.-B.: The aggretation principle in scenario analysis and stochastic optimization..In: Algorithms and Model Formulations in Mathematical Programming (S. W. Wallace, ed.), Springer, Berlin 1989. MR 0996646, 10.1007/978-3-642-83724-1_4
Reference: [35] Yang, Z., Qui, H. L., Luo, X. W., Shen, D.: Simulating schedule optimization problem in steelmaking continuous casting process..Int. J. Simul. Model. 14 (2015), 710-718. 10.2507/ijsimm14(4)co17
Reference: [36] Yang, J., Ji, Z. P., Liu, S., Jia, Q.: Multi-objective optimization based on pareto optimum in secondary cooling and EMS of continuous casting..In: Proc. International Conference on Advanced Robotics and Mechatronics (ICARM), Macau 2016, pp. 283-287. 10.1109/icarm.2016.7606933
Reference: [37] Žampachová, E., Popela, P., Mrázek, M.: Optimum beam design via stochastic programming..Kybernetika 46 (2010), 571-582. MR 2676092
Reference: [38] Zarandi, M. H. F., Dorry, F., Moghadam, F. S.: Steelmaking-continuous casting scheduling problem with interval type 2 fuzzy random due dates..In: Proc. IEEE Conference on Norbert Wiener in the 21st Century (21CW), Boston 2014. 10.1109/norbert.2014.6893896
.

Files

Files Size Format View
Kybernetika_53-2017-6_6.pdf 2.668Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo