Previous |  Up |  Next

Article

Title: Congruences and homomorphisms on $\Omega $-algebras (English)
Author: Eghosa Edeghagba, Elijah
Author: Šešelja, Branimir
Author: Tepavčević, Andreja
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 892-910
Summary lang: English
.
Category: math
.
Summary: The topic of the paper are $\Omega$-algebras, where $\Omega$ is a complete lattice. In this research we deal with congruences and homomorphisms. An $\Omega$-algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an $\Omega$-valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce $\Omega$-valued congruences, corresponding quotient $\Omega$-algebras and $\Omega$-homomorphisms and we investigate connections among these notions. We prove that there is an $\Omega$-homomorphism from an $\Omega$-algebra to the corresponding quotient $\Omega$-algebra. The kernel of an $\Omega$-homomorphism is an $\Omega$-valued congruence. When dealing with cut structures, we prove that an $\Omega$-homomorphism determines classical homomorphisms among the corresponding quotient structures over cut subalgebras. In addition, an $\Omega$-congruence determines a closure system of classical congruences on cut subalgebras. Finally, identities are preserved under $\Omega$-homomorphisms. (English)
Keyword: lattice-valued algebra
Keyword: congruence
Keyword: homomorphism
MSC: 06D72
MSC: 08A72
idZBL: Zbl 06861631
idMR: MR3750110
DOI: 10.14736/kyb-2017-5-0892
.
Date available: 2018-02-26T11:51:02Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147100
.
Reference: [1] Ajmal, N., Thomas, K. V.: Fuzzy lattices..Inform. Sci. 79 (1994), 271-291. MR 1282402, 10.1016/0020-0255(94)90124-4
Reference: [2] Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles..Kluwer Academic/Plenum Publishers, New York 2002. 10.1007/978-1-4615-0633-1
Reference: [3] Bělohlávek, R., Vychodil, V.: Algebras with fuzzy equalities..Fuzzy Sets and Systems 157 (2006), 161-201. MR 2186221, 10.1016/j.fss.2005.05.044
Reference: [4] Bělohlávek, R., Vychodil, V.: Fuzzy Equational Logic..Studies in Fuzziness and Soft Computing, Springer 186 (2005), pp. 139-170. 10.1007/11376422_3
Reference: [5] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy identities with application to fuzzy semigroups..Inform. Sci. 266 (2014), 148-159. MR 3165413, 10.1016/j.ins.2013.11.007
Reference: [6] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy equational classes are fuzzy varieties..Iranian J. Fuzzy Systems 10 (2013), 1-18. MR 3135796
Reference: [7] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy equational classes..In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference, pp. 1-6. MR 3135796, 10.1109/fuzz-ieee.2012.6251259
Reference: [8] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: $E$-fuzzy groups..Fuzzy Sets and Systems 289 (2016), 94-112. MR 3454464, 10.1016/j.fss.2015.03.011
Reference: [9] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra..Grauate Texts in Mathematics, 1981. Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3
Reference: [10] Czédli, G., Erné, M., Šešelja, B., Tepavčević, A.: Characteristic triangles of closure operators with applications in general algebra..Algebra Univers. 62 (2009), 399-418. MR 2670173, 10.1007/s00012-010-0059-2
Reference: [11] Demirci, M.: Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations. Part I: Fuzzy functions and their applications. Part II: Vague algebraic notions. Part III: Constructions of vague algebraic notions and vague arithmetic operations..Int. J. General Systems 32 (2003), 3, 123-155, 157-175, 177-201. MR 1967128, 10.1080/0308107031000090765
Reference: [12] Demirci, M.: A theory of vague lattices based on many-valued equivalence relations I: general representation results..Fuzzy Sets and Systems 151 (2005), 437-472. MR 2126168, 10.1016/j.fss.2004.06.017
Reference: [13] Demirci, M.: A theory of vague lattices based on many-valued equivalence relations II: Complete lattices..Fuzzy Sets and Systems 151 (2005), 473-489. MR 2126169, 10.1016/j.fss.2004.06.004
Reference: [14] Nola, A. Di, Gerla, G.: Lattice valued algebras..Stochastica 11 (1987), 137-150. MR 0990882
Reference: [15] Edeghagba, E. E., Šešelja, B., Tepavčević, A.: Omega-Lattices..Fuzzy Sets and Systems 311 (2017), 53-69. MR 3597106, 10.1016/j.fss.2016.10.011
Reference: [16] Fourman, M. P., Scott, D. S.: Sheaves and logic..In: Applications of Sheaves (M. P. Fourman, C. J. Mulvey and D. S. Scott, eds.), Lecture Notes in Mathematics, 753, Springer, Berlin, Heidelberg, New York 1979, pp. 302-401. MR 0555551, 10.1007/bfb0061824
Reference: [17] Goguen, J. A.: $L$-fuzzy sets..J. Math. Anal. Appl. 18 (1967), 145-174. Zbl 0145.24404, MR 0224391, 10.1016/0022-247x(67)90189-8
Reference: [18] Gottwald, S.: Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part II: Category theoretic approaches..Studia Logica 84 (2006) 1, 23-50, 1143-1174. MR 2271287, 10.1007/s11225-006-9001-1
Reference: [19] Höhle, U.: Quotients with respect to similarity relations..Fuzzy Sets and Systems 27 (1988), 31-44. MR 0950448, 10.1016/0165-0114(88)90080-2
Reference: [20] Höhle, U.: Fuzzy sets and sheaves. Part I: Basic concepts..Fuzzy Sets and Systems 158 (2007), 11, 1143-1174. MR 2314674, 10.1016/j.fss.2006.12.009
Reference: [21] Höhle, U., Šostak, A. P.: Axiomatic foundations of fixed-basis fuzzy topology..Springer US, 1999, pp. 123-272. MR 1788903, 10.1007/978-1-4615-5079-2_5
Reference: [22] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic..Prentice Hall, New Jersey 1995. MR 1329731
Reference: [23] Šešelja, B., Tepavčević, A.: On Generalizations of fuzzy algebras and congruences..Fuzzy Sets and Systems 65 (1994), 85-94. MR 1294042, 10.1016/0165-0114(94)90249-6
Reference: [24] Šešelja, B., Tepavčević, A.: Fuzzy identities..In: Proc. 2009 IEEE International Conference on Fuzzy Systems, pp. 1660-1664. 10.1109/fuzzy.2009.5277317
.

Files

Files Size Format View
Kybernetika_53-2017-5_10.pdf 371.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo