[4] Prato, G. Da, Iannelli, M., Tubaro, L.:
An existence result for a linear abstract stochastic equation in Hilbert spaces. Rend. Sem. Mat. Univ. Padova 67 (1982), 171-180.
MR 0682709 |
Zbl 0499.60061
[12] Mishura, Y. S.:
Quasi-linear stochastic differential equations with a fractional-Brownian component. Theory Probab. Math. Statist. 68 (2004), 103-115 English. Ukrainian original translation from Teor. \u Imov\=ır. Mat. Stat. 68 2003 95-106.
DOI 10.1090/S0094-9000-04-00608-8 |
MR 2000399 |
Zbl 1050.60060
[16] Nualart, D.:
Stochastic integration with respect to fractional Brownian motion and applications. Stochastic Models. Seventh Symposium on Probability and Stochastic Processes, Mexico City 2002 Contemp. Math. 336, American Mathematical Society, Providence J. M. Gonzáles-Barrios et al. (2003), 3-39.
DOI 10.1090/conm/336 |
MR 2037156 |
Zbl 1063.60080
[18] Pérez-Abreu, V., Tudor, C.:
Multiple stochastic fractional integrals: a transfer principle for multiple stochastic fractional integrals. Bol. Soc. Mat. Mex., III. Ser. 8 (2002), 187-203.
MR 1952159 |
Zbl 1020.60050
[19] Samko, S. G., Kilbas, A. A., Marichev, O. I.:
Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993).
MR 1347689 |
Zbl 0818.26003
[20] Šnupárková, J.:
Stochastic bilinear equations with fractional Gaussian noise in Hilbert space. Acta Univ. Carol., Math. Phys. 51 (2010), 49-67.
MR 2828153 |
Zbl 1229.60073
[21] Tanabe, H.:
Equations of Evolution. Monographs and Studies in Mathematics 6, Pitman, London (1979).
MR 0533824 |
Zbl 0417.35003