Previous |  Up |  Next

Article

Title: Stochastic affine evolution equations with multiplicative fractional noise (English)
Author: Maslowski, Bohdan
Author: Šnupárková, Jana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 1
Year: 2018
Pages: 7-35
Summary lang: English
.
Category: math
.
Summary: A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than $1/2$. Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained. (English)
Keyword: geometric fractional Brownian motion
Keyword: stochastic differential equations in Hilbert space
Keyword: stochastic bilinear equation
MSC: 60G22
MSC: 60H15
idZBL: Zbl 06861540
idMR: MR3763980
DOI: 10.21136/AM.2018.0036-17
.
Date available: 2018-03-13T06:24:35Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147112
.
Reference: [1] Alòs, E., Nualart, D.: Stochastic integration with respect to the fractional Brownian motion.Stochastics Stochastics Rep. 75 (2002), 129-152. Zbl 1028.60048, MR 1978896, 10.1080/1045112031000078917
Reference: [2] Bártek, J., Garrido-Atienza, M. J., Maslowski, B.: Stochastic porous media equation driven by fractional Brownian motion.Stoch. Dyn. 13 (2013), Article ID 1350010, 33 pages. Zbl 1291.35453, MR 3116928, 10.1142/S021949371350010X
Reference: [3] Bonaccorsi, S.: Nonlinear stochastic differential equations in infinite dimensions.Stochastic Anal. Appl. 18 (2000), 333-345. Zbl 0959.60046, MR 1758177, 10.1080/07362990008809673
Reference: [4] Prato, G. Da, Iannelli, M., Tubaro, L.: An existence result for a linear abstract stochastic equation in Hilbert spaces.Rend. Sem. Mat. Univ. Padova 67 (1982), 171-180. Zbl 0499.60061, MR 0682709
Reference: [5] Prato, G. Da, Iannelli, M., Tubaro, L.: Some results on linear stochastic differential equations in Hilbert spaces.Stochastics 6 (1982), 105-116. Zbl 0475.60041, MR 0665246, 10.1080/17442508208833210
Reference: [6] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1992). Zbl 0761.60052, MR 1207136, 10.1017/CBO9780511666223
Reference: [7] Duncan, T. E., Maslowski, B., Pasik-Duncan, B.: Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise.Stochastic Processes Appl. 115 (2005), 1357-1383. Zbl 1076.60054, MR 2152379, 10.1016/j.spa.2005.03.011
Reference: [8] Fernique, X.: Régularité des trajectoires des fonctions aléatoires gaussiennes.Ec. d'Ete Probab. Saint-Flour IV-1974, Lect. Notes Math. 480 1-96 (1975), French. Zbl 0331.60025, MR 0413238, 10.1007/bfb0080190
Reference: [9] Flandoli, F.: On the semigroup approach to stochastic evolution equations.Stochastic Anal. Appl. 10 (1992), 181-203. Zbl 0762.60046, MR 1154534, 10.1080/07362999208809262
Reference: [10] Garrido-Atienza, M. J., Maslowski, B., Šnupárková, J.: Semilinear stochastic equations with bilinear fractional noise.Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 3075-3094. Zbl 1353.60059, MR 3567802, 10.3934/dcdsb.2016088
Reference: [11] León, J. A., Nualart, D.: Stochastic evolution equations with random generators.Ann. Probab. 26 (1998), 149-186. Zbl 0939.60066, MR 1617045, 10.1214/aop/1022855415
Reference: [12] Mishura, Y. S.: Quasi-linear stochastic differential equations with a fractional-Brownian component.Theory Probab. Math. Statist. 68 (2004), 103-115 English. Ukrainian original translation from Teor. \u Imov\=ır. Mat. Stat. 68 2003 95-106. Zbl 1050.60060, MR 2000399, 10.1090/S0094-9000-04-00608-8
Reference: [13] Mishura, Y., Shevchenko, G.: The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion.Stochastics 80 (2008), 489-511. Zbl 1154.60046, MR 2456334, 10.1080/17442500802024892
Reference: [14] Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus. From Stein's Method to Universality.Cambridge Tracts in Mathematics 192, Cambridge University Press, Cambridge (2012). Zbl 1266.60001, MR 2962301, 10.1017/CBO9781139084659
Reference: [15] Nualart, D.: The Malliavin Calculus and Related Topics.Probability and Its Applications, Springer, New York (1995). Zbl 0837.60050, MR 1344217, 10.1007/978-1-4757-2437-0
Reference: [16] Nualart, D.: Stochastic integration with respect to fractional Brownian motion and applications.Stochastic Models. Seventh Symposium on Probability and Stochastic Processes, Mexico City 2002 Contemp. Math. 336, American Mathematical Society, Providence J. M. Gonzáles-Barrios et al. (2003), 3-39. Zbl 1063.60080, MR 2037156, 10.1090/conm/336
Reference: [17] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44, Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [18] Pérez-Abreu, V., Tudor, C.: Multiple stochastic fractional integrals: a transfer principle for multiple stochastic fractional integrals.Bol. Soc. Mat. Mex., III. Ser. 8 (2002), 187-203. Zbl 1020.60050, MR 1952159
Reference: [19] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689
Reference: [20] Šnupárková, J.: Stochastic bilinear equations with fractional Gaussian noise in Hilbert space.Acta Univ. Carol., Math. Phys. 51 (2010), 49-67. Zbl 1229.60073, MR 2828153
Reference: [21] Tanabe, H.: Equations of Evolution.Monographs and Studies in Mathematics 6, Pitman, London (1979). Zbl 0417.35003, MR 0533824
.

Files

Files Size Format View
AplMat_63-2018-1_2.pdf 398.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo