Previous |  Up |  Next

Article

Title: A zero-inflated geometric INAR(1) process with random coefficient (English)
Author: Bakouch, Hassan S.
Author: Mohammadpour, Mehrnaz
Author: Shirozhan, Masumeh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 1
Year: 2018
Pages: 79-105
Summary lang: English
.
Category: math
.
Summary: Many real-life count data are frequently characterized by overdispersion, excess zeros and autocorrelation. Zero-inflated count time series models can provide a powerful procedure to model this type of data. In this paper, we introduce a new stationary first-order integer-valued autoregressive process with random coefficient and zero-inflated geometric marginal distribution, named ZIGINAR$_{\rm RC}(1)$ process, which contains some sub-models as special cases. Several properties of the process are established. Estimators of the model parameters are obtained and their performance is checked by a small Monte Carlo simulation. Also, the behavior of the inflation parameter of the model is justified. We investigate an application of the process using a real count climate data set with excessive zeros for the number of tornados deaths and illustrate the best performance of the proposed process as compared with a set of competitive INAR(1) models via some goodness-of-fit statistics. Consequently, forecasting for the data is discussed with estimation of the transition probability and expected run length at state zero. Moreover, for the considered data, a test of the random coefficient for the proposed process is investigated. (English)
Keyword: randomized binomial thinning
Keyword: geometric minima
Keyword: estimation
Keyword: likelihood ratio test
Keyword: mixture distribution
Keyword: realization with random size
MSC: 62M10
idZBL: Zbl 06861543
idMR: MR3763983
DOI: 10.21136/AM.2018.0082-17
.
Date available: 2018-03-13T06:25:46Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147115
.
Reference: [1] Al-Osh, M. A., Aly, E.-E. A. A.: First order autoregressive time series with negative binomial and geometric marginals.Commun. Stat. Theory. Methods. 21 (1992), 2483-2492. Zbl 0775.62225, MR 1186065, 10.1080/03610929208830925
Reference: [2] Al-Osh, M. A., Alzaid, A. A.: First-order integer-valued autoregressive (INAR(1)) process.J. Time. Ser. Anal. 8 (1987), 261-275. Zbl 0617.62096, MR 0903755, 10.1111/j.1467-9892.1987.tb00438.x
Reference: [3] Aly, E.-E. A. A., Bouzar, N.: On some integer-valued autoregressive moving average models.J. Multivariate Anal. 50 (1994), 132-151. Zbl 0811.62084, MR 1292612, 10.1006/jmva.1994.1038
Reference: [4] Alzaid, A. A., Al-Osh, M. A.: First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties.Stat. Neerl. 42 (1988), 53-61. Zbl 0647.62086, MR 0959714, 10.1111/j.1467-9574.1988.tb01521.x
Reference: [5] Alzaid, A. A., Al-Osh, M. A.: Some autoregressive moving average processes with generalized Poisson marginal distributions.Ann. Inst. Stat. Math. 45 (1993), 223-232. Zbl 0777.62085, MR 1232490, 10.1007/BF00775809
Reference: [6] Bakouch, H. S., Ristić, M. M.: Zero truncated Poisson integer-valued AR(1) model.Metrika 72 (2010), 265-280. Zbl 1200.62099, MR 2725101, 10.1007/s00184-009-0252-5
Reference: [7] Barreto-Souza, W.: Zero-modified geometric INAR(1) process for modelling count time series with deflation or inflation of zeros.J. Time. Ser. Anal. 36 (2015), 839-852. Zbl 1330.62333, MR 3419670, 10.1111/jtsa.12131
Reference: [8] Bourguignon, M., Vasconcellos, K. L. P.: First order non-negative integer valued autoregressive processes with power series innovations.Braz. J. Probab. Stat. 29 (2015), 71-93. Zbl 1329.62370, MR 3299108, 10.1214/13-BJPS229
Reference: [9] Gomes, D., Castro, L. C. e: Generalized integer-valued random coefficient for a first order structure autoregressive (RCINAR) process.J. Stat. Plann. Inference 139 (2009), 4088-4097. Zbl 1183.62149, MR 2558352, 10.1016/j.jspi.2009.05.037
Reference: [10] Jacobs, P. A., Lewis, P. A. W.: Discrete time series generated by mixtures. I: Correlational and runs properties.J. R. Stat. Soc., Ser. B. 40 (1978), 94-105. Zbl 0374.62087, MR 0512147
Reference: [11] Jazi, M. A., Jones, G., Lai, C.-D.: First-order integer valued AR processes with zero inflated Poisson innovations.J. Time. Ser. Anal. 33 (2012), 954-963. Zbl 1281.62197, MR 2991911, 10.1111/j.1467-9892.2012.00809.x
Reference: [12] Jazi, M. A., Jones, G., Lai, C.-D.: Integer valued AR(1) with geometric innovations.J. Iran. Stat. Soc. JIRSS 11 (2012), 173-190. Zbl 1278.62136, MR 3010343
Reference: [13] Khoo, W. C., Ong, S. H., Biswas, A.: Modeling time series of counts with a new class of INAR(1) model.Stat. Pap. 58 (2017), 393-416. Zbl 1367.60033, MR 3649495, 10.1007/s00362-015-0704-0
Reference: [14] Li, C., Wang, D., Zhang, H.: First-order mixed integer-valued autoregressive processes with zero-inflated generalized power series innovations.J. Korean Stat. Soc. 44 (2015), 232-246. Zbl 1328.62527, MR 3342635, 10.1016/j.jkss.2014.08.004
Reference: [15] McKenzie, E.: Some simple models for discrete variate time series.J. Water Res. Bull. 21 (1985), 645-650. 10.1111/j.1752-1688.1985.tb05379.x
Reference: [16] Nicholls, D. F., Quinn, B. G.: Random Coefficient Autoregressive Models: An Introduction.Lecture Notes in Statistics 11, Springer, New York (1982). Zbl 0497.62081, MR 0671255, 10.1007/978-1-4684-6273-9
Reference: [17] Pavlopoulos, H., Karlis, D.: INAR(1) modeling of overdispersed count series with an environmental application.Environmetrics 19 (2008), 369-393. MR 2440038, 10.1002/env.883
Reference: [18] Ridout, M., Demétrio, C. G. B., Hinde, J.: Models for count data with many zeros.Proceedings of the 19th International Biometrics Conference, Cape Town, South Africa (1998), 179-190.
Reference: [19] Ristić, M. M., Bakouch, H. S., Nastić, A. S.: A new geometric first-order integer-valued autoregressive (NGINAR(1)) process.J. Stat. Plan. Inference. 139 (2009), 2218-2226. Zbl 1160.62083, MR 2507983, 10.1016/j.jspi.2008.10.007
Reference: [20] Ristić, M. M., Nastić, A. S., Bakouch, H. S.: Estimation in an integer-valued autoregressive process with negative binomial marginals (NBINAR(1)).Commun. Stat., Theory Methods 41 (2012), 606-618. Zbl 1237.62125, MR 2874378, 10.1080/03610926.2010.529528
Reference: [21] Schweer, S., Weiß, C. H.: Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion.J. Comput. Stat. Data Anal. 77 (2014), 267-284. MR 3210062, 10.1016/j.csda.2014.03.005
Reference: [22] Steutel, F. W., Harn, K. van: Discrete analogues of self-decomposability and stability.Ann. Probab. 7 (1979), 893-899. Zbl 0418.60020, MR 0542141, 10.1214/aop/1176994950
Reference: [23] stheim, D. Tjø: Estimation in nonlinear time series models.Stochastic Processes Appl. 21 (1986), 251-273. Zbl 0598.62109, MR 0833954, 10.1016/0304-4149(86)90099-2
Reference: [24] Weiß, C. H.: Thinning operations for modeling time series of count---a survey.AStA, Adv. Stat. Anal. 92 (2008), 319-341. MR 2426093, 10.1007/s10182-008-0072-3
Reference: [25] Zhang, H., Wang, D.: Inference for random coefficient INAR(1) process based on frequency domain analysis.Commun. Stat., Simulation Comput. 44 (2015), 1078-1100. Zbl 1315.62074, MR 3264922, 10.1080/03610918.2013.804556
Reference: [26] Zhao, Z., Hu, Y.: Statistical inference for first-order random coefficient integer-valued autoregressive processes.J. Inequal. Appl. 2015 (2015), Paper No. 359, 12 pages. Zbl 1333.62219, MR 3424785, 10.1186/s13660-015-0886-y
Reference: [27] Zheng, H., Basawa, I. V., Datta, S.: First-order random coefficient integer-valued autoregressive processes.J. Stat. Plan. Inference 137 (2007), 212-229. Zbl 1098.62117, MR 2292852, 10.1016/j.jspi.2005.12.003
Reference: [28] Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., Smith, G. M.: Mixed Effects Models and Extensions in Ecology with R.Statistics for Biology and Health, Springer, New York (2009). Zbl 1284.62024, MR 2722501, 10.1007/978-0-387-87458-6
.

Files

Files Size Format View
AplMat_63-2018-1_5.pdf 555.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo